Abstract:
A method of forming a flexible thermal regulation device having multiple functional layers. The layers of the device are formed using various manufacturing techniques and are then integrated to form a sheet having multiple devices disposed thereon. The individual devices are then formed from the sheet.
Abstract:
Aerosols can be created by filament stretching and breaking of Newtonian and non-Newtonian fluids by applying a strain to and stretching the fluid. The fluid is stretched along a strain pathway and forms a fluid filament between diverging surfaces. The stretched fluid filament breaks into droplets that can be harvested to form a mist or aerosol. The aerosol creation systems can include one or more pairs of counter-rotating rollers that are positioned adjacent to each other that stretch the fluid or a pair of pistons that move toward and away from each other to stretch the fluid. Some aerosol creation systems can include multiple pairs of counter-rotating rollers that are positioned in a circular, oval, or linear pattern. The aerosol creation system with multiple pairs of counter-rotating rollers can generate mist is one or more directions and can be positioned between two concentric rings or linearly, among other configurations.
Abstract:
A coating mechanism disposes a liquid (e.g., polymer) thin film onto a conveyor surface (e.g., roller or belt) that is moved by a suitable motor to convey the thin film into a precisely controlled gap (or nip) region where applied potentials generate an electric field that causes the liquid to undergo Electrohydrodynamic (EHD) patterning deformation, whereby the liquid forms patterned micro-scale features. A curing mechanism (e.g., a UV laser) is used to solidify (e.g., cross-link) the patterned liquid features inside or immediately after exiting the gap region, thereby forming micro-scale patterned structures that are either connected by an intervening web as part of a sheet, or separated into discrete micro-scale structures. Nanostructures (e.g., nanotubes or nanowires) disposed in the liquid become vertically oriented during the EHD patterning process. Segmented electrodes and patterned charges are utilized to provide digital patterning control.
Abstract:
An apparatus and method are provided for extracting a build part from an additive manufacturing machine. Upon completion of the build part by the additive manufacturing machine, a pin array is placed above the build part, the pin array including a plurality of pins slidably supported by a support plate for vertical movement relative to the support plate. The pin array is moved toward the build part so that the plurality of pins contact the build part and conform to the contour of the build part. The pins of the pin array are locked with the pins in contact with and conforming to the build part. The pin array and build part are inverted so that the build part is supported by the locked pins of the pin array. All of the pins of the array are locked simultaneously by a common locking component. The build plate can be formed on a sacrificial interposer plate that is removed by an etchant bath supported on the pin array when the build part is inverted.
Abstract:
An apparatus and method are provided for extracting a build part from an additive manufacturing machine. Upon completion of the build part by the additive manufacturing machine, a pin array is placed above the build part, the pin array including a plurality of pins slidably supported by a support plate for vertical movement relative to the support plate. The pin array is moved toward the build part so that the plurality of pins contact the build part and conform to the contour of the build part. The pins of the pin array are locked with the pins in contact with and conforming to the build part. The pin array and build part are inverted so that the build part is supported by the locked pins of the pin array. All of the pins of the array are locked simultaneously by a common locking component. The build plate can be formed on a sacrificial interposer plate that is removed by an etchant bath supported on the pin array when the build part is inverted.
Abstract:
A deposition system has a multi-material print head, a first reservoir of a first compatible material having particles containing chemical elements similar to a first substrate, a second reservoir of a second compatible material having particles containing chemical elements similar to a second substrate, a third reservoir of an polymer precursor material, and at least one mixer. A method of bonding a joint between dissimilar substrate materials includes functionalizing a first compatible material having chemical elements similar to a first substrate, mixing the first compatible material with a polymer precursor material, functionalizing a second compatible material having chemical elements similar to a second substrate, mixing the second compatible material with a polymer precursor material, and using the deposition system to deposit the first and second compatible materials and a polymer precursor material on the joint between the first and second substrate materials.
Abstract:
A gas separation system has system input inlet configured to receive a stream mixture including a target gas, one or more spray generators positioned to spray a non-sprayable liquid to change a concentration of the target gas in the non-sprayable liquid, one or more system outlets positioned to outlet an output material, wherein at least one of the system outlets outputs a material having a lower amount of the target gas than the input stream mixture, and a recirculating path connected to the one or more outputs and the input inlet to allow recirculation of the non-sprayable liquid. A method of performing gas separation includes absorbing a target gas from an input stream in a non-sprayable capture liquid, and releasing the target gas in an output gas stream by spraying the non-sprayable capture liquid into a heated volume using a spray generator. A method of performing gas separation includes receiving an input stream that includes a target gas, using one or more spray generators to apply a non-sprayable liquid as a spray to the input stream to change a concentration of the target gas in the liquid, and outputting the liquid with the changed concentration through an outlet.
Abstract:
Ink-based digital printing systems useful for ink printing include a photoreceptor layer configured to receive a layer of liquid immersion fluid. The liquid immersion fluid includes dampening fluid, dispersed gas particles, and charge directors that impart charge to the solid particles. The photoreceptor surface is charged to a uniform potential, and selectively discharged using an ROS according to image data to form an electrostatic latent image. The charged liquid immersion fluid adheres to portions of the photoreceptor surface according to the electrostatic latent image to form a fountain solution image. The fluid portion of the fountain solution image can be partially transferred to an imaging member and/or transfer member to form a dampening fluid image, either or both of which may be electrically biased. The dampening fluid image is inked on the transfer member, and the resulting ink image transferred to a print substrate.
Abstract:
An apparatus for non-evaporative drying comprises a solvent permeable transfer substrate having a first surface and a second surface opposite the first surface. An ejector is configured to eject a droplet comprising at least one solvent onto the first surface of the transfer substrate. A reservoir comprising a draw solution is configured to place the draw solution in contact with the second surface of the transfer substrate, and a print substrate is configured to contact a portion of the first surface of the transfer substrate.
Abstract:
An apparatus comprises a stressed glass member and an actuator mounted on the stressed glass member. A power source is coupled to the actuator. An abrasion structure is disposed between the actuator and the stressed glass member. The abrasion structure comprises abrading features in contact with the stressed glass member. The abrading features have a hardness higher than a hardness of the stressed glass member. When energized by the power source, the actuator is configured to induce movement of the abrasion structure that causes the abrading features to create scratches in the stressed glass member to a depth sufficient to initiate fracture of the stressed glass member.