Abstract:
An additive deposition system and method, the system including generating an aerosol of additive material that is charged and deposited onto a selectively charged substrate. Selectively charging the substrate includes uniformly charging a surface of the substrate, selectively removing charged from the substrate to create charged and neutral regions of the substrate surface. The charged regions of the substrate having a polarity opposite a polarity of the charged aerosol. The charged aerosol of additive material deposited onto the selectively charged portions of the substrate surface due to the potential difference between the charged substrate and charged aerosol. The system and method further including repeating the additive deposition process to create a multi-layer matrix of additive material.
Abstract:
The disclosed spray deposition systems and methods control the formation and dispensation of droplets during the atomization of a fluid. Such systems and methods generally can generate small quantities and droplets of a desired size of highly-viscous fluids and/or fluids having non-Newtonian properties or other complex rheologies using mechanical systems and processes with the option of further controlling the droplet size and/or the volume of droplets with various enhancements. The systems and methods stretch fluid between a fluid feed system and a surface and are able to form the controlled-volume of the droplets.
Abstract:
An additive manufacturing system has an aerosol generator to aerosolize a powder, a deposition surface, a surface charging element to apply a blanket charge to the deposition surface, a charging print head to selectively remove portions of the blanket charge from the deposition surface, and a transport system to transport the aerosol powder from the aerosol generator to the deposition surface, the transport system having an aerosol charging element to apply charge opposite of the blanket charge to the aerosol powder. An additive manufacturing process includes creating an aerosol from a powder at a spray generator, charging the aerosol to produce a charged aerosol having a first charge, forming a blanket charge on a deposition surface having a second charge of an opposite polarity from the first charge, selectively removing regions of the blanket charge, and transporting the charged aerosol to the charged regions to form structures on the charged regions from the charged aerosol.
Abstract:
A method of atomizing a fluid using a pair of counter-rotating rollers including a first roller having grooves, the grooves enclosed by a pair of fins extending away from the first surface and a second roller having channels, the first and second rollers aligned with each other such that the grooves of the first roller mate with the channels of the second roller forming enclosures and nips. The method includes drawing the fluid from a fluid source through the nips, the nips having an upstream side and a downstream side, stretching the fluid between the diverging surfaces of the pair of counter-rotating rollers on the downstream side of the nips to form fluid filaments, and forming fluid droplets from the stretched fluid filaments on the downstream side of the nips between the diverging surfaces of the pair of counter-rotating rollers.
Abstract:
An atomization device includes a pair of counter-rotating rollers, a fluid source configured to coat at least one of the rollers in a feed fluid, and a baffle unit. The counter-rotation of the rollers stretches the feed fluid into a fluid filament between the two diverging surfaces of the rollers. The stretched fluid filaments break into a plurality of droplets at a capillary break-up point of the feed fluid. The baffle unit introduces a baffle fluid within the interior of the device and the baffle fluid transports formed droplets of the feed fluid from the atomization device. Excess or misguided atomized fluid droplets are collected by the baffle unit and are recycled back into the device for use in later atomization processes. The variation of atomization device parameters allows for the selection of droplets having desired physical parameters.
Abstract:
A system to fabricate hierarchical graded materials includes a reservoir to contain a material to be deposited, a print head connected to the reservoir to allow the print head to receive the material to be deposited, the print head having a mixing section, and an actuator connected to the print head, the actuator configured to actuate the print head in six axes of motion.
Abstract:
A method includes providing a reservoir of randomly oriented fibers in a solution, dispensing the solution of randomly oriented fibers through a nozzle having an orientation component onto a porous substrate as a solution of aligned fibers, and immobilizing the fibers to form a fiber pre-form. A system includes a porous substrate, a deposition nozzle, a reservoir of randomly oriented fibers in solution connected to the deposition nozzle, the deposition nozzle position adjacent the porous substrate and connected to the reservoir, the nozzle to receive the randomly oriented fibers and output aligned fibers, and a vacuum connected to the porous substrate to remove fluid from the porous substrate as the deposition nozzle deposits the aligned fibers on the porous substrate to produce a fiber pre-form having aligned fibers.
Abstract:
A method of powder coating a substrate includes receiving a powder coating material into a feed input, using the feed input, melting the powder coating material into a homogeneous fluid of powder coating material, receiving the homogeneous fluid of powder coating material into a filament extension atomizer positioned in-line with the feed input, atomizing, with the filament extension atomizer, the received homogeneous fluid of powder coating material into multiple droplets of powder coating material, cooling the droplets of powder coating material to a processing temperature that prevents the droplets from agglomerating, and directing the cooled droplets through a deposition passage positioned in-line with the filament extension atomizer, the deposition passage configured to direct at least a portion of the cooled droplets towards a substrate.
Abstract:
A method to fabricate hierarchical graded materials includes providing a reservoir of functionalized particles, mixing at least some of the functionalized particles using a mixer in the print head having a mixed fluid volume control on an order of a voxel to produce mixed functionalized particles, and actuating a print head to deposit the mixed functionalized particles on a substrate.
Abstract:
The disclosed spray deposition systems and methods control the formation and dispensation of droplets during the atomization of a fluid. Such systems and methods generally can generate small quantities and droplets of a desired size of highly-viscous fluids and/or fluids having non-Newtonian properties or other complex rheologies using mechanical systems and processes with the option of further controlling the droplet size and/or the volume of droplets with various enhancements. The systems and methods stretch fluid between a fluid feed system and a surface and are able to form the controlled-volume of the droplets.