Abstract:
A liquid application apparatus for applying liquid to soil during a planting operation, having: a ground-engaging component mounted to a planter row unit, the planter row unit opening a planting trench, the planter row unit depositing seeds in the planting trench, the ground-engaging component disposed at least partially within said planting trench as the planter row unit traverses the field; a first liquid injection conduit mounted to said ground-engaging component and disposed to inject liquid into a first sidewall of said planting trench, and wherein said ground-engaging component is mounted in a housing via at least one of a height adjustment arm that is pivotably mounted in the housing to allow for height adjustment of said ground-engaging component, and a spring that is pivotably mounted in the housing to allow for vertical deflection of said ground-engaging component.
Abstract:
A soil apparatus (e.g., a knife) to engage in soil is described herein. In one embodiment, the soil apparatus includes a soil engaging portion to engage with soil and a plurality of sensors disposed in the soil apparatus. Each sensor is independently pivotable to independently position for sensing soil characteristics of soil.
Abstract:
A method of calibrating a yield sensor of a harvesting machine. The yield sensor generates a grain force signal as clean grain piles are thrown by the elevator flights against the sensor surface of the yield sensor. A grain height sensor is disposed to detect a height of the clean grain pile on each passing elevator flight. Each grain height signal is associated with a corresponding grain force signal by applying a time shift to account for a time delay between the time the grain height signal is generated and the time at which the impact signal is generated. The grain force signal is corrected by multiplying the grain force signal by a correction factor. The correction factor is the sum of the grain height signals divided by the sum of the grain force signals over a predetermined period.
Abstract:
A system for controlling the speed of a seed-planting implement, the system having: a furrow closing assembly including at least one ground engaging component configured to rotate relative to soil within a field as the seed-planting implement is moved across the field, the furrow closing assembly configured to close a furrow formed in the soil by the seed-planting implement; a sensor configured to capture data indicative of an operational parameter of the furrow closing assembly; and an implement-based controller supported on the seed-planting implement and being communicatively coupled to the sensor, the implement-based controller being configured to initiate control of a drive parameter of a work vehicle configured to tow the seed-planting implement based on sensor data received from the sensor in a manner that adjusts the speed of the seed-planting implement.
Abstract:
An agricultural implement system having: a row unit coupled to a tool bar of an agricultural implement; an opener system coupled to a chassis of the row unit and configured to engage soil to form a trench; a downforce system configured to apply a downforce to the row unit to adjust a contact force between the row unit and the soil; a soil condition sensor configured to detect a condition of the soil and/or an operational sensor configured to detect operation of the agricultural implement system; a closing system, configured to close the trench created by the opener system; and a controller coupled to the soil condition sensor and/or the operational sensor, wherein the controller is configured to control the downforce system and the closing system in response to feedback from the soil condition sensor and/or the operational sensor.
Abstract:
A soil apparatus (e.g., seed firmer) having a locking system is described herein. In one embodiment, the soil apparatus includes a lower base portion for engaging in soil of an agricultural field, an upper base portion, and a neck portion having protrusions to insert into the lower base portion of a base and then lock when a region of the upper base portion is inserted into the lower base portion and this region of the upper base portion presses the protrusions to lock the neck portion to the upper base portion.
Abstract:
A method of determining a mass flow rate, volumetric flow and test weight of grain during harvesting operations. A sensor is disposed in the harvesting machine against which clean grain piles are thrown by the clean grain elevator flights. The sensor changes the direction of the clean grain pile such that each clean grain pile compresses into a substantially discrete, contiguous shape producing discrete grain forces resulting in discrete signal pulse magnitudes generated by the sensor. The mass flow rate is calculated by summing the signal magnitudes and dividing the summed magnitudes by the sampling period. The volumetric flow rate is calculated by multiplying the pulse width generated by the sensor by a multiplier which relates pulse width to volumetric flow. The test weight of the clean grain is calculated by dividing the mass flow rate by the volumetric flow rate.
Abstract:
A seed firmer and bracket combination for a planter row unit. The bracket includes a forward configured to mount to a frame member of the planter row unit. A rearward portion extends rearward of the seed tube or seed conveyor. The seed firmer includes a body having an upper portion, a tail portion, and a resilient flexible portion between the upper portion and the tail portion. The upper portion is releasably received in a vertical opening in the bracket such that the resilient flexible portion and tail portion extend downwardly and rearwardly from the bracket. The seed firmer is releasably restrained in the bracket preventing the seed firmer from moving upward, forward, rearward and downward until the upper portion of the seed firmer is disengaged from the bracket.
Abstract:
A grain paddle for a clean grain elevator of a combine harvester. The paddle includes a substantially rigid body with a planar portion having ends disposed distal and proximal to an elevator chain of the combine harvester. Some paddle embodiments include an angled end adjacent the proximal end of the planar portion. Some paddle embodiments include an angled end adjacent to the distal end of the planar portion. Some paddle embodiments include sloped lateral edges.
Abstract:
Apparatus, systems and methods are provided for monitoring yield while harvesting grain. In some embodiments a template is provided for cutting an opening in a clean grain elevator plane. In some embodiments, a gauge and shims are provided for positioning a yield sensor on the clean grain elevator.