Abstract:
A radio frequency (RF) integrated circuit may include a die having passive components including at least one pair of capacitors covered by a first dielectric layer supported by the die. The RF integrated circuit may also include an inline pad structure coupled to the at least one pair of capacitors proximate an edge of the die. The inline pad structure may include a first portion and a second portion extending into a dicing street toward the edge of the die and covered by at least a second dielectric layer.
Abstract:
The present disclosure provides circuits and methods for fabricating circuits. A circuit may include an insulator having a first surface, a second surface, a periphery, a first subset of circuit elements disposed on the first surface, a second subset of circuit elements disposed on the second surface, and at least one conductive sidewall disposed on the periphery, wherein the conductive sidewall electrically couples the first subset of circuit elements to the second subset of circuit elements.
Abstract:
A skewed, co-spiral inductor structure may include a first trace arranged in a first spiral pattern that is supported by a substrate. The skewed, co-spiral inductor structure may also include a second trace arranged in a second spiral pattern, in which the second trace is coupled to the first trace. The first trace may overlap with the second trace in orthogonal overlap areas. In addition, each orthogonal overlap area may have a size defined by a width of the first trace and the width of the second trace. Also, parallel edges of the first trace and the second trace may be arranged to coincide.
Abstract:
Provided are space-efficient capacitors that have a higher quality factor than conventional designs and improve coupling of electrical energy from a through-glass via (TGV) to a dielectric. For example, provided is a TGV having a non-rectangular cross-section, where one end of the TGV is coupled to a first metal plate. A dielectric material is formed on the first metal plate. A second metal plate is formed on the dielectric material in a manner that overlaps at least a portion of the first metal plate to form at least one overlapped region of the dielectric material. At least a part of the perimeter of the overlapped region is non-planar. The overlapped region can be formed in a shape of a closed ring, in a plurality of portions of a ring shape, in substantially a quarter of a ring shape, and/or in substantially a half of a ring shape.
Abstract:
A symmetric varactor structure may include a first varactor component. The first varactor component may include a gate operating as a second plate, a gate oxide layer operating as a dielectric layer and a body operating as a first plate of an area modulating capacitor. In addition, doped regions may surround the body of the first varactor component. The first varactor component may be supported on a backside by an isolation layer. The symmetric varactor structure may also include a second varactor component electrically coupled to the backside of the first varactor component through a backside conductive layer.
Abstract:
A three-dimensional (3D) orthogonal inductor pair is embedded in and supported by a substrate, and has a first inductor having a first coil that winds around a first winding axis and a second inductor having a second coil that winds around a second winding axis. The second winding axis is orthogonal to the first winding axis. The second winding axis intersects the first winding axis at an intersection point that is within the substrate.
Abstract:
Provided are space-efficient capacitors that have a higher quality factor than conventional designs and improve coupling of electrical energy from a through-glass via (TGV) to a dielectric. For example, provided is a TGV having a non-rectangular cross-section, where one end of the TGV is coupled to a first metal plate. A dielectric material is formed on the first metal plate. A second metal plate is formed on the dielectric material in a manner that overlaps at least a portion of the first metal plate to form at least one overlapped region of the dielectric material. At least a part of the perimeter of the overlapped region is non-planar. The overlapped region can be formed in a shape of a closed ring, in a plurality of portions of a ring shape, in substantially a quarter of a ring shape, and/or in substantially a half of a ring shape.
Abstract:
An inductive device includes multiple packaged devices, each including a body and a conductor layer within the body and a set of external connectors. The conductor layer of a packaged device includes a set of conductive lines electrically connected to the set of external connectors of the packaged device. Conductive lines of two packaged devices of the inductive device are at an angle relative to one another. External connectors of the packaged devices are coupled to one another to electrically connect the sets of conductive lines to define one or more coils, each coil having multiple turns and each turn including a conductive line of each packaged device.
Abstract:
Disclosed are techniques for a structure of an antenna apparatus. In an aspect, an antenna apparatus includes a glass substrate having an upper surface, a lower surface, and a side portion; a first conductive structure on the upper surface of the glass substrate; a second conductive structure on the lower surface of the glass substrate; and a through-glass via (TGV) structure including a first conductive film on a sidewall of a first TGV hole, the first conductive film being configured to couple the first conductive structure to the second conductive structure, wherein the side portion includes a plurality of metalized recess structures having recess sidewalls and a plurality of second conductive films respectively on the recess sidewalls of the plurality of metalized recess structures, each recess sidewall having a shape corresponding to a partial TGV hole.
Abstract:
Disclosed is a radio frequency (RF) filter that vertically integrates an acoustic die with inductors formed in one or more layers above the acoustic die. The acoustic die may be over-molded so that the acoustic dome, important for maintaining acoustic integrity, may be protected.