Abstract:
Methods and systems for monitoring use, determining risk, and pricing insurance policies for a vehicle having one or more autonomous or semi-autonomous operation features are provided. According to certain aspects, with the customer's permission, it may be detected by sensors that an occupant of the autonomous or semi-autonomous vehicle is experiencing a medical emergency. A nearby medical facility may be determined based upon the vehicle location and the detected medical emergency. A route from the current vehicle location to the medical facility may be determined, and the autonomous or semi-autonomous vehicle may be automatically directed or routed to the medical facility. A message may also be generated and transmitted to the medical facility to alert them that a person in need of timely medical assistance is on the way. Life and auto insurance discounts may be generated for risk averse customers based upon their vehicles having the emergency response functionality.
Abstract:
The method, system, and computer-readable medium cause the monitoring of a vehicle operator during the course of vehicle operation to determine whether the vehicle operator is impaired and causes a mitigating response when an impairment is determined to exist. The vehicle operator, the environment surrounding the vehicle, or forces acting on the vehicle may be monitored using a variety of sensors, including optical sensors, accelerometers, or biometric sensors (e.g., skin conductivity, heart rate, or voice modulation). When the vehicle operator is determined to be impaired, an alert or other mitigating response is implemented, based on the sensor data. In some embodiments, mitigating actions may be taken to avoid vehicle operator impairment. In further embodiments, a training period may be used to generate a profile for the vehicle operator. In yet further embodiments, information regarding multiple types of impairments may be used to determine and implement an appropriate mitigating response.
Abstract:
A system and method for determining a vehicle insurance premium for a period of time based at least in part on collected vehicle operation data, the system comprising: a mobile device, comprising: one or more sensors associated with the mobile device and configured to automatically collect vehicle operation data during a data collection session; a processor; a non-transitory storage medium; a display; a transmitter; and a set of computer readable instructions stored in the non-transitory storage medium and when executed by the processor configured to allow the mobile device to collect vehicle operation data and transmit the collected vehicle operation data; and a remote processing computer, comprising: a server that receives collected vehicle operation data; a database that stores collected vehicle operation data; and a rating engine that determines a vehicle insurance premium based at least in part on collected vehicle operation data.
Abstract:
In an embodiment, movement-data is gathered with one or more sensors (e.g., accelerometers, GPS receivers, etc.) during a driver's driving session. A score may be calculated for the driving session, and the driver's progress is evaluated by a driver-evaluation system. A driving session report or graphical user-interface (GUI) is generated with a computer processor and displayed at a display device. The displayed report or GUI includes a graphic representing the driver's progress relative to historical data.
Abstract:
A method includes receiving data about potential impairment of a vehicle operator, wherein the data about potential impairment is generated by: (i) a first optical sensor monitoring a vehicle operator, and (ii) a second optical sensor monitoring an environment ahead of a vehicle operated by the vehicle operator. The computer-implemented method further includes assigning a plurality of scores based on the data about potential vehicle operator impairment, wherein each of the plurality of scores corresponds to a respective impairment indicator, determining an impairment score by performing a mathematical operation on the plurality of scores, and providing the impairment score to a remote device configured to alert the vehicle operator based on the impairment score.
Abstract:
A method for providing vehicle operation data to a remote computer or server for calculation of a vehicle insurance premium for a period of time based at least in part on collected vehicle operation data, wherein the method includes steps of: collecting vehicle operation data via a mobile device while the mobile device is associated with an operating vehicle, wherein the vehicle operation data has insurance risk predictive power; and transmitting the collected vehicle operation data from the mobile device to a remote computer. The remote computer or server receives collected vehicle operation data, stores the collected vehicle operation data in a database, a determines a vehicle insurance premium via a rating engine based at least in part on collected vehicle operation data.
Abstract:
Systems and approaches relate to, inter alia, identifying customer opportunities. The systems and approaches may monitor a plurality of routes traversed by a vehicle. The systems and approaches may then access historical route data for the plurality travel routes. The systems and approaches may further calculate a risk index based on the historical route data, and determine at least one customer opportunity based on the calculated risk index.
Abstract:
Vehicles may have the capability to navigate according to various levels of autonomous capabilities, the vehicle having a different set of autonomous competencies at each level. In certain situations, the vehicle may shift from one level of autonomous capability to another. The shift may require more or less driving responsibility from a human operator. Sensors inside the vehicle collect human operator parameters to determine an alertness level of the human operator. An alertness level is determined based on the human operator parameters and other data including historical data or human operator-specific data. Notifications are presented to the user based on the determined alertness level that are more or less intrusive based on the alertness level of the human operator and on the urgency of an impending change to autonomous capabilities. Notifications may be tailored to specific human operators based on human operator preference and historical performance.
Abstract:
An alert may be triggered to notify a pedestrian of the current operational mode of a nearby vehicle. For instance, a vehicle may operate in an autonomous or manual mode, and may occasionally switch from one mode to the other. A pedestrian who may be unaware of the current operational mode of a nearby vehicle may notice the alert and proceed accordingly. In one embodiment, an indication of the current operational mode of the nearby vehicle may be transmitted to an electronic device associated with the pedestrian. The device may generate a notification to the pedestrian based on the current operational mode. In an additional or alternative embodiment, the alert may be transmitted by the vehicle externally to be visible or audible to the pedestrian. In some embodiments, the alert may be triggered only for particular operational modes (e.g., only for autonomous or only for manual).
Abstract:
The following relates generally to AI-based review of insurance claims complaints. In some embodiments, one or more processors: (1) receive, via a chatbot, an insurance claim complaint; (2) categorize, via the chatbot, the insurance claim complaint by determining a category of the insurance claim complaint, the category comprising a tone category or a policy category; (3) build, via the chatbot, a complaint report including information of the insurance claim complaint and an indication of the category; and/or (5) send, via the chatbot, the complaint report to an insurance complaint administrator computing device.