Abstract:
Various implementations described herein are directed to methods for connecting power devices prior to deployment in a photovoltaic installation, for cost savings and easy deployment. Some embodiments disclosed herein include manufacturing a chain of power devices already coupled by conductors, and providing a mechanical assembly for convenient storage and deployment.
Abstract:
Various implementations described herein are directed to a method for recording, by a device, identifying information of a plurality of components of a photovoltaic (PV) installation. The method may record, by the device, at least one of timestamps or locations corresponding to each component of the plurality of components. The method may generate, based on the identifying information, timestamps, and locations, a map of the PV installation.
Abstract:
A device, system, and method is disclosed for improving safety of a power system. For example, a differential current may be detected using at least one sensor by temporarily enabling sampling of current flowing through one or more conductors. Additionally, current flow may be temporarily altered in order to sample current in a system. The measurements may be handled locally and/or remotely and appropriate actions may be taken to enhance the overall safety of the system.
Abstract:
A method of signaling between a photovoltaic module and an inverter module. The inverter module is connected to the photovoltaic module. In an initial mode of operation an initial code is modulated thereby producing an initial signal. The initial signal is transmitted from the inverter module to the photovoltaic module. The initial signal is received by the photovoltaic module. The operating mode is then changed to a normal mode of power conversion, and during the normal mode of operation a control signal is transmitted from the inverter to the photovoltaic module. A control code is demodulated and received from the control signal. The control code is compared with the initial code producing a comparison. The control command of the control signal is validated as a valid control command from the inverter module with the control command only acted upon when the comparison is a positive comparison.
Abstract:
Various implementations described herein are directed to systems, apparatuses and methods for operating stand-alone power systems. The systems may include power generators (e.g., photovoltaic generators and/or wind turbines), storage devices (e.g., batteries and/or flywheels), power modules (e.g., power converters) and loads. The methods may include various methods for monitoring, determining, controlling and/or predicting system power generation, system power storage and system power consumption.
Abstract:
Controlling a power converter circuit for a direct current (DC) power source is disclosed. The power converter may be operative to convert input power received from the DC power source to an output power and to perform maximum power point tracking of the power source. The power converter is adapted to provide the output power to a load that also performs maximum power point tracking.
Abstract:
A system includes a central controller for determining at least one parameter for a load connector of a load. The system also includes a central transceiver for transmitting a signal relating to the least one parameter of the load connector. The load connector comprises input terminals for connecting to power lines of a power distribution network, output terminals for connecting to the load, a switch for connecting/disconnecting the input terminals to/from the output terminals, a connector transceiver for receiving the signal, a voltage sensor for measuring a voltage across the input terminals, and a connector controller. The connector controller may determine a voltage disconnect threshold for the load connector based on the at least one parameter. The connector controller may control the switch to connect the output terminals to the input terminals based on a voltage measurement and the voltage disconnect threshold.
Abstract:
Systems, apparatuses, and methods are described for power conversion. The power conversion may be done by a plurality of power devices with different configurations. For example, the plurality of power devices may include one or more converters with an upside-up buck configuration and one or more converters with an upside-down buck configuration. The power conversion may be done by one or more power devices that may be configurable between different modes of configuration. For example, one or more power converters may be configured in either an upside-up buck configuration mode or an upside-down buck configuration mode. The selection of a certain mode of configuration of the converter may be permanent or non-permanent.
Abstract:
A power harvesting system including multiple parallel-connected photovoltaic strings, each photovoltaic string includes a series-connection of photovoltaic panels. Multiple voltage-compensation circuits may be connected in series respectively with the photovoltaic strings. The voltage-compensation circuits may be configured to provide respective compensation voltages to the photovoltaic strings to maximize power harvested from the photovoltaic strings. The voltage-compensation circuits may be include respective inputs which may be connected to a source of power and respective outputs which may be connected in series with the photovoltaic strings.
Abstract:
A method of signaling between a photovoltaic module and an inverter module. The inverter module is connected to the photovoltaic module. In an initial mode of operation an initial code is modulated thereby producing an initial signal. The initial signal is transmitted from the inverter module to the photovoltaic module. The initial signal is received by the photovoltaic module. The operating mode is then changed to a normal mode of power conversion, and during the normal mode of operation a control signal is transmitted from the inverter to the photovoltaic module. A control code is demodulated and received from the control signal. The control code is compared with the initial code producing a comparison. The control command of the control signal is validated as a valid control command from the inverter module with the control command only acted upon when the comparison is a positive comparison.