Abstract:
An interposer that acts as a buffer zone between a transceiver IC and a dielectric waveguide interconnect is used to establish two well defined reference planes that can be optimized independently. The interposer includes a block of material having a first interface region to interface with an antenna coupled to an integrated circuit (IC) and a second interface region to interface to the dielectric waveguide. An interface waveguide is formed by a defined region positioned within the block of material between the first interface region and the second interface region.
Abstract:
An interposer that acts as a buffer zone between a transceiver IC and a dielectric waveguide interconnect is used to establish two well defined reference planes that can be optimized independently. The interposer includes a block of material having a first interface region to interface with an antenna coupled to an integrated circuit (IC) and a second interface region to interface to the dielectric waveguide. An interface waveguide is formed by a defined region positioned within the block of material between the first interface region and the second interface region.
Abstract:
A duty cycle correction circuit includes a charge pump and a controller. The charge pump includes a current source, a first output, and a second output. The charge pump routes current from the current source to the first output during a positive portion of a clock, and routes current from the current source to the second output during a negative portion of the clock. The controller compares charge accumulated from the first output to charge accumulated from the second output over a plurality of clock cycles to determine which of the positive portion of the clock and the negative portion of the clock is longer. The controller also generates a digital value that indicates an amount of adjustment to apply to a duty cycle of the clock based on which of the positive portion of the clock and the negative portion of the clock is longer.
Abstract:
A multichannel dielectric wave guide includes a set of dielectric core members that have a length and a cross section shape that is approximately rectangular, The core members have a first dielectric constant value. A cladding surrounds the set of dielectric core members and has a second dielectric constant value that is lower than the first dielectric constant.
Abstract:
A duty cycle correction circuit includes a charge pump and a controller. The charge pump includes a current source, a first output, and a second output. The charge pump routes current from the current source to the first output during a positive portion of a clock, and routes current from the current source to the second output during a negative portion of the clock. The controller compares charge accumulated from the first output to charge accumulated from the second output over a plurality of clock cycles to determine which of the positive portion of the clock and the negative portion of the clock is longer. The controller also generates a digital value that indicates an amount of adjustment to apply to a duty cycle of the clock based on which of the positive portion of the clock and the negative portion of the clock is longer.
Abstract:
A communication cable includes one or more conductive elements surrounded by a dielectric sheath. The sheath member has a first dielectric constant value. A dielectric core member is placed longitudinally adjacent to and in contact with an outer surface of the sheath member. The core member has a second dielectric constant value that is higher than the first dielectric constant value. A cladding surrounds the sheath member and the dielectric core member. The cladding has a third dielectric constant value that is lower than the second dielectric constant value. A dielectric wave guide is formed by the dielectric core member surrounded by the sheath and the cladding.
Abstract:
A communication cable includes a dielectric wave guide (DWG) that has a dielectric core member that has a first dielectric constant value and a cladding surrounding the dielectric core member that has a second dielectric constant value that is lower than the first dielectric constant. An RJ45 compatible connector is attached to a mating end of the DWG. The RJ45 connector is configured to retain a complimentary coupling mechanism on a mating end of a second DWG.
Abstract:
A dielectric wave guide (DWG) has a longitudinal dielectric core member. The core member has a first dielectric constant value. A cladding surrounds the dielectric core member and has a second dielectric constant value that is lower than the first dielectric constant. A portion of the DWG is configured as a corner having a radius. A conductive layer formed on an outer radius of the corner.
Abstract:
A metallic waveguide is mounted on a multilayer substrate. The metallic waveguide has an open end formed by a top, bottom and sides configured to receive a core member of a dielectric waveguide, and an opposite tapered end formed by declining the top of the metallic waveguide past the bottom of the metallic waveguide and down to contact the multilayer substrate. A pinnacle of the tapered end is coupled to the ground plane element, and the bottom side of the metallic waveguide is in contact with the multiplayer substrate and coupled to the microstrip line.
Abstract:
A system includes an electronic device coupled to a mating end of a dielectric wave guide (DWG). The electronic device has a multilayer substrate that has an interface surface configured for interfacing to the mating end of the DWG. A conductive layer is etched to form a dipole antenna disposed adjacent the interface surface. A reflector structure is formed in the substrate adjacent the dipole antenna opposite from the interface surface. A set of director elements is embedded in the mating end of the DWG. Specific spacing is maintained between the dipole antenna and the set of director elements.