Abstract:
An insulation composition for an appliance is disclosed. The insulation composition includes a plurality of porous walled hollow glass microspheres. The porous walled hollow glass microspheres include a wall defining an interior cavity and an outer surface. The wall may further define a plurality of interconnected pores. The pores may be sized in a range of about 10-300 nm (100-3,000 Å) and fluidly couple an exterior space with the interior cavity.
Abstract:
An operable panel for an appliance includes a metallic outer wrapper having a perimetrical wrapper edge that partially defines a perimetrical breaker channel, an inner liner and a plurality of corner brackets disposed proximate the perimetrical wrapper edge. Each corner bracket cooperates with the perimetrical wrapper edge to fully define the perimetrical breaker channel. A trim breaker is adhered to the metallic outer wrapper and the corner brackets at the perimetrical breaker channel and having a liner channel that receives a portion of the inner liner. The trim breaker extends between the inner liner and the outer wrapper. An insulation material is disposed within an insulating cavity defined between the inner liner and the outer wrapper.
Abstract:
An appliance includes a metallic outer wrapper having sidewalls, a wrapper backwall and a machine wall. At least one metallic inner liner has liner walls and a liner backwall, wherein the metallic outer wrapper and the at least one metallic inner liner are coupled together at a trim breaker to define a structural cabinet having a hermetically sealed interior cavity defined between the metallic outer wrapper and the at least one metallic inner liner. The trim breaker defines a front face of the structural cabinet. At least one trim breaker conduit extends through the wrapper and liner backwalls wherein the trim breaker conduit defines a conduit through the structural cabinet, and wherein the structural cabinet is hermetically sealed at the trim breaker conduit.
Abstract:
A refrigerator includes a vacuum insulated cabinet and a surround lighting feature. The vacuum insulated cabinet includes a liner disposed within a wrapper, which are interconnected by a thermal bridge to form a vacuum cavity therebetween. A wall covering assembly includes a top wall disposed adjacent to and spaced-apart from a top wall of the liner. The wall covering assembly also includes a rear wall disposed adjacent to and spaced-apart from a rear wall of the liner. In assembly, the liner and the wall covering assembly cooperate to define a refrigerator compartment. A cavity is formed between liner and the wall covering assembly. A surround lighting assembly is disposed around an opening into the refrigerator compartment and is powered by a wiring system concealed by the wall covering assembly.
Abstract:
An appliance includes a metallic outer wrapper having sidewalls, a wrapper backwall and a machine wall. At least one metallic inner liner has liner walls and a liner backwall, wherein the metallic outer wrapper and the at least one metallic inner liner are coupled together at a trim breaker to define a structural cabinet having a hermetically sealed interior cavity defined between the metallic outer wrapper and the at least one metallic inner liner. The trim breaker defines a front face of the structural cabinet. At least one trim breaker conduit extends through the wrapper and liner backwalls wherein the trim breaker conduit defines a conduit through the structural cabinet, and wherein the structural cabinet is hermetically sealed at the trim breaker conduit.
Abstract:
A refrigerator includes a vacuum insulated cabinet and a surround lighting feature. The vacuum insulated cabinet includes a liner disposed within a wrapper, which are interconnected by a thermal bridge to form a vacuum cavity therebetween. A wall covering assembly includes a top wall disposed adjacent to and spaced-apart from a top wall of the liner. The wall covering assembly also includes a rear wall disposed adjacent to and spaced-apart from a rear wall of the liner. In assembly, the liner and the wall covering assembly cooperate to define a refrigerator compartment. A cavity is formed between liner and the wall covering assembly. A surround lighting assembly is disposed around an opening into the refrigerator compartment and is powered by a wiring system concealed by the wall covering assembly.
Abstract:
An appliance includes an outer wrapper and an inner liner that are connected to define a structural cabinet with an insulating cavity defined between the outer wrapper and the inner liner. An insulating material is disposed within the insulating cavity, wherein an at least partial vacuum is defined within the insulating cavity. The at least partial vacuum defines a pressure differential between the exterior of the structural cabinet and the insulating cavity, the pressure differential defining an inward compressive force. Wrapper structural reinforcements are disposed proximate the outer wrapper. Liner structural reinforcements are disposed proximate the inner liner, wherein each of the wrapper and liner structural reinforcements extend into the insulating cavity and are free of engagement with one another. The wrapper and liner structural reinforcements are positioned to resist the inward compressive force.
Abstract:
A refrigerator and method are provided where the refrigerator includes two or more cooling compartments monitored by temperature sensors and cooled by a plurality of evaporators. The cooling for the evaporators is provided by a compressor operating on a recurring cooling cycle. A processor provides varying levels of voltages to the compressor and sets the recurring cooling cycle. The recurring cooling cycle comprises at least two cooling periods and a rest period. The method includes determines the length of the rest period as compared a predetermined rest period range. When the rest period falls outside the predetermined range, the processor selects the voltage to send to the compressor during a subsequent cooling cycle. The processor selects the voltage based on at least one of the temperature of the first and second compartments and the voltage to the compressor during the cooling cycle.
Abstract:
A method to control a fixed-sequence dual evaporator cooling system including providing a recurring cooling cycle cooling system wherein each recurring cooling cycle comprises first and second cooling cycles for cooling respective first and second interiors, a pump-out cycle for returning coolant to a condenser, and an idle cycle, and providing a processor to establish exceptions to the recurring cooling cycle. A step includes the processor monitoring first and second actual temperatures of the respective first and second interiors, selecting predetermined first and second control temperatures for the respective first and second interiors, and selecting a command input signal to supply to a compressor, the condenser fan, the first and second evaporator fans, and the valve of the cooling system during the recurring cooling cycle based upon the first and second actual temperatures and the predetermined first and second control temperatures to initiate the established exceptions.
Abstract:
A refrigerator and method are provided where the refrigerator includes two or more cooling compartments monitored by temperature sensors and cooled by a plurality of evaporators. The cooling for the evaporators is provided by a compressor operating on a recurring cooling cycle. A processor provides varying levels of voltages to the compressor and sets the recurring cooling cycle. The recurring cooling cycle comprises at least two cooling periods and a rest period. The method includes determines the length of the rest period as compared a predetermined rest period range. When the rest period falls outside the predetermined range, the processor selects the voltage to send to the compressor during a subsequent cooling cycle. The processor selects the voltage based on at least one of the temperature of the first and second compartments and the voltage to the compressor during the cooling cycle.