Abstract:
This invention discloses a manufacturing method and a structure for a chip heat dissipation. This heat dissipation structure includes a bottom plate of circuit structure, a die of central processing unit and a cap. The cover is often used in conducting the waste heat generated from the chip. The cover can be made of a special thermal conduction material, including a metal and a bracket structure of carbon element which have high thermal conductivity so as to improve the efficiency of heat conduction. The corresponding manufacturing method for this heat conduction material can be made with chemical vapor deposition, physical vapor deposition, electroplating or the other materials preparation method. The bracket structure of carbon element can be coated on the metal surface and also can be mixed into the metal.
Abstract:
A multi-layer circuit board includes first, second, third, fourth, fifth, sixth and seventh insulating substrates; first, second, third, fourth and fifth signal wiring layers; first and second ground wiring layers; and a power wiring layer. Each of the first and seventh insulating substrates has a thickness ranging from 2.5 to 6.5 mil. Each of the second, fourth and sixth insulating substrates has a thickness ranging from 3 to 9 mil. Each of the third and fifth insulating substrates has a thickness ranging from 3 to 23 mil. The first signal wiring layer has a first resistance with respect to the first ground wiring layer. The second signal wiring layer has a second resistance with respect to the first ground wiring layer and the power wiring layer. The third signal wiring layer has a third resistance with respect to the first ground wiring layer and the power wiring layer. The fourth signal wiring layer has a fourth resistance with respect to the second ground wiring layer and the power wiring layer. The fifth signal wiring layer has a fifth resistance with respect to the second ground wiring layer. The first, second, third, fourth and fifth resistances are within the range of 49.5 to 60.5 ohms.
Abstract:
An antenna device with a surface antenna pattern is formed either on an internal surface or on the external surface of a casing of an electronic device by film coating technology. The surface antenna pattern is either directly connected to a signal feeding line or connected to a signal feeding line through a signal guiding passage. In an embodiment, a recess is pre-formed on the external surface of the casing and then a surface antenna pattern is coated to the recess. The antenna device may further comprise an antenna coupling element arranged at the internal surface of the casing, in opposite to the surface antenna pattern. The antenna coupling element is inductively coupled with the surface antenna pattern for transceiving the signals to the electronic device.
Abstract:
A case structure of an electronic device is used for directly integrating an antenna of a signal transceiver circuit and a case of the electronic device, so as to improve a space utilization rate of the electronic device. At least one trench pattern is formed on a specific region of the metal case of the electronic device. When the metal case is electrically coupled to the signal transceiver circuit of the electronic device, the metal case and the trench pattern constitute at least one antenna of the electronic device.
Abstract:
An antenna device with a surface antenna pattern is formed either on an internal surface or on the external surface of a casing of an electronic device by film coating technology. The surface antenna pattern is either directly connected to a signal feeding line or connected to a signal feeding line through a signal guiding passage. In an embodiment, a recess is pre-formed on the external surface of the casing and then a surface antenna pattern is coated to the recess. The antenna device may further comprise an antenna coupling element arranged at the internal surface of the casing, in opposite to the surface antenna pattern. The antenna coupling element is inductively coupled with the surface antenna pattern for transceiving the signals to the electronic device.
Abstract:
A dual-band antenna is provided, which includes a signal resonance unit, a grounding unit, a connection unit, and a signal line. The grounding unit is disposed opposite to the signal resonance unit. The connection unit has a first connection element and a second connection element, wherein one end of the first connection element is connected to the signal resonance unit and the other end of the first connection element is connected to the grounding unit, while one end of the second connection element is connected to one side of the first connection element. The signal line has a signal feeding end and a circuit connection end, wherein the signal feeding end is electrically connected to the second connection element, and the circuit connection end is electrically connected to a wireless circuit device.
Abstract:
Disclosed is an antenna device with an antenna element with a predetermined shorten length, and a resonance circuit coupled to the antenna element, having a predetermined resonance frequency for matching the shorten length of the antenna element to adaptively make the antenna element in response to and transceive a wireless signal with a predetermined frequency.
Abstract:
Disclosed is an antenna device having a substrate, an antenna element for transceiving a wireless signal, an antenna signal feeding line for feeding the wireless signal, and an ion-implanted resonant pattern, which includes a first coupling pattern implanted in the substrate by an Ion-implantation process and a second coupling pattern formed at a position corresponding to the first coupling pattern with a predetermined distance therebetween, formed at an adjacent position with respect to the antenna element. As the antenna element transceives the wireless signal of the predetermined radiation frequency and generates an induction voltage, the first coupling pattern and the second coupling pattern each generates a coupled induction voltage and a capacitance therebetween, hence forming a resonance with the antenna element.
Abstract:
Disclosed is a coupling antenna device for transceiving a plurality of wireless signals with multiple radiation frequencies. The coupling antenna device includes an antenna pattern having a plurality of adjacent resonating sectors, each of the resonating sectors having a length determined by a specific radiation frequency responsive to one of the wireless signals.
Abstract:
This invention discloses a manufacturing method and the structure for a dissipation heat pipe. The dissipation heat pipe includes a hollow closed pipe, a column, a type of fluid and a wick structure. The dissipation heat pipe is often used in conducting the heat from the chip. The dissipation heat pipe can be made of a special thermal conduction material, including the metal and a bracket structure of carbon element which have high thermal conductivity so as to improve the heat conduction efficiency. The corresponding manufacturing method for this thermal conduction material can be made with chemical vapor deposition, physical vapor deposition, electroplating or the other materials preparation method. The bracket structure of carbon element can coat on the metal surface and also can be mixed into the metal.