Abstract:
A pressure regulating oxygen bottle has a bottle body filled with liquid, a cap mounted on the bottle body, an outer tube mounted in the bottle body, and an inner tube mounted through the cap and protruding in the outer tube. The outer tube has multiple flow holes arranged linearly between two opposite ends of the outer tube. The inner tube is connected to an artificial respiration system and has multiple communicating holes arranged spirally between two opposite ends of the inner tube. By turning the inner tube to allow one of the communicating holes to align with a corresponding one of the flow holes of the outer tube, a hydrostatic pressure formed between a liquid surface of the liquid and the communicating hole is changed. Accordingly, gas pressure inside the artificial respiration system can be adjusted.
Abstract:
Described here are closed-circuit breathing devices and methods for their use. In general, the closed-circuit breathing device is configured to achieve a steady-state equilibrium, whereby therapeutic gas is introduced into the breathing circuit in small, controlled volumes until a steady state concentration of the therapeutic gas is reached. During this time, the closed-circuit breathing device is operated in a true closed circuit, such that the therapeutic gas is not lost to the atmosphere. Safety measures are built into the closed-circuit breathing device so that a hypoxic mixture is not delivered to the subject. The therapeutic gas may be xenon.
Abstract:
Disclosed is a nasal ventilation mask having separate ports to monitor end-tidal CO2 expulsion integrated into the mask in order to monitor end-tidal CO2 expelled nasally or orally. Also disclosed is a CPR mask for nose-to-mouth and/or mouth-to-mouth resuscitation, having a body shaped to cover the nose and/or mouth of a victim, said mask including a CO2 absorber for eliminating at least in part rescuer's exhaled CO2 delivered to the victim.
Abstract:
A non-invasive ventilation system may include an interface. The interface may include at least one gas delivery jet nozzle adapted to be positioned in free space and aligned to directly deliver ventilation gas into an entrance of a nose. The at least one gas delivery jet nozzle may be connected to a pressurized gas supply. The ventilation gas may entrain ambient air to elevate lung pressure, elevate lung volume, decrease the work of breathing or increase airway pressure, and wherein the ventilation gas is delivered in synchrony with phases of breathing. A support for the at least one gas delivery jet nozzle may be provided. A breath sensor may be in close proximity to the entrance of the nose. A patient may spontaneous breathe ambient air through the nose without being impeded by the interface.
Abstract:
The body has a fluid inlet port for receiving pressurized fluid and a fluid outlet port connected to the retention balloon. A first passage connects the fluid inlet port and the fluid outlet port. A second passage in the body is connected to the balloon fluid return path and is at the pressure of the retention balloon. A valve prevents fluid flow through the first passage when actuated. The valve includes a pressure-responsive member movable to a position to obstruct fluid flow in response to fluid pressure in the second passage exceeding the predetermined level. Flexible means such as a membrane defines a normally open portion of the first fluid passage, which is closed by the moveable means bearing on the membrane when pressure exceeding the predetermined level actuates the valve.
Abstract:
Described are systems and methods for compensating long term sensitivity drift of catalytic type electrochemical gas sensors used in systems for delivering therapeutic nitric oxide (NO) gas to a patient by compensating for drift that may be specific to the sensors atypical use in systems for delivering therapeutic nitric oxide gas to a patient. In at least some instances, the long term sensitivity drift of catalytic type electrochemical gas sensors can be addressed using calibration schedules, which can factor in the absolute change in set dose of NO being delivered to the patient that can drive one or more baseline calibrations. The calibration schedules can be used reduce the amount of times the sensor goes offline. Systems and methods described may factor in in actions occurring at the delivery system and/or aspects of the surrounding environment, prior to performing a baseline calibration, and may postpone the calibration and/or rejected using the sensor's output for the calibration.
Abstract:
A respiratory therapy instrument providing a telehealth platform for pulmonary care includes a housing with opposed extension arms, an airway tube removably clamped between the opposed extension arms, a pair of pressure sensors, and a circuit board retained within the housing. The pressure sensors are in communication with an interior of the airway tube and are configured to detect pulmonary flow data within the airway tube. The circuit board is configured to collect the pulmonary flow data detected by the pair of pressure sensors and includes a transmitter to send data, including the collected pulmonary flow data, wirelessly to a computing device. The collected pulmonary flow data is utilized in game play for an incentivization game operated on the computing device. The respiratory therapy instrument is configurable for use in a first configuration, whereby the respiratory therapy instrument operates to adapt an existing respiratory therapy device for telehealth functionality, or in a second configuration, whereby the respiratory therapy instrument operates as an independent respiratory therapy device with telehealth functionality.
Abstract:
A passive valve for use as a fixed leak valve. The valve includes a body having an internal chamber, first and second body ports in fluid communication with the chamber with the first port configured for fluid communication with a patient connection and the second body port configured for fluid communication with a ventilator, a body passageway in fluid communication with the chamber and with ambient air exterior of the body, and a check valve seal positioned to seal the body passageway to permit the flow of gas within the chamber through the body passageway to the exterior of the body and to prevent the flow of ambient air exterior of the body through the body passageway into the chamber. In alternative embodiments, the valve is incorporated into the patient connection or constructed as a separate part connectable to the patient connection.
Abstract:
An active exhalation valve for use with a ventilator to control flow of patient exhaled gases. The valve includes a patient circuit connection port, a patient connection port, an exhaled gas port, a pilot pressure port, and a valve seat. The valve further has a movable poppet with inner and outer bellows members and a bellows poppet face. An activation pressure applied to the pilot pressure port extends the bellows members to move the poppet face into engagement with the valve seat and restrict flow of patient exhaled gases to the exhaled gas port, and the reduction of the activation pressure allows the bellows members to move the poppet face away from the valve seat and out of engagement with the valve seat to permit flow of patient exhaled gases to the exhaled gas port, thereby controlling the flow of patient exhaled gases from the valve.
Abstract:
A method of providing a breath to a human patient. The patient has a patient connection connected, by a patient circuit, to a ventilator having a first ventilator connection and a different second ventilator connection. Each of the first and second ventilator connections are in fluid communication with the patient circuit. The method includes identifying, with the ventilator, initiation of an inspiratory phase of the breath, delivering a bolus of oxygen to the first ventilator connection before or during the inspiratory phase, and delivering breathing gases comprising air to the second ventilator connection during the inspiratory phase. The ventilator isolates the bolus of oxygen delivered to the first ventilator connection from the breathing gases delivered to the second ventilator connection.