Abstract:
Described herein is an apparatus and method for delivering fluid components for semiconductor processes such as chemical vapor deposition (CVD) and chemical etch processes. Any prescribed mixture of separate fluid reagents can be delivered with extreme accuracy and precision using the apparatus we describe here. The unique embodiment of a precision fluid pumping system utilizing internal pressure and temperature transducers, capacity volume and restrictive elements that comprise a continuous pulse-free system for use in CVD applications. This system has superior performance characteristics in the areas of: accuracy, precision, repeatability of the fluid mixture delivery and continuous repeatable delivery without intermittent pulsation. We describe a novel fluid pump whose design is integrated using a closed loop feedback system composed of temperature and pressure sensors. This allows the entire system to perform to in either an isobaric-isothermal mode or an isocratic-isothermal mode. The construction of this system is separated into three principle areas (Fluid Pump Hardware), (Fluid phase change hardware) and (Control algorithms), the complete embodiment constitutes a novel invention in the field of chemical delivery as pertaining to the fabrication of semiconductor devices.
Abstract:
A highly reliable digital level sensor assembly is provided to replace optical and capacitance type sensors in high purity chemical delivery systems. The digital level sensor assembly is particularly useful in bulk chemical refill delivery systems for high purity chemicals employing a manifold that ensures contamination free operation and canister change outs with a minimum of valves and tubing.
Abstract:
A plasma reactor system is described in which a plurality of components are segregated into modules. Devices known as mass flow controllers for gas supply lines are located one each per module. A plenum for inert gas is connected to each module to bath the module in an inert atmosphere.
Abstract:
The present invention provides a particle packing apparatus which can pack uniformly particles of catalyst, etc. without breaking the particles. The particle packing apparatus for packing particles into a vessel, comprises: a base held at a fixed position with respect to the vessel; a distributor which is rotational symmetrical to a central axis extended vertically and distributes the particles; a bearing fixed to the base and holding the distributor rotatably; a particle supplying unit fixed to the base, being rotational symmetrical to the central axis, having a bottom opening being smaller than an inner diameter of the bearing and supplying the particles to the distributor through the bottom opening; and a motor rotating the distributor.
Abstract:
A liquid supply apparatus includes: a storing tank configured to store a liquid; a supply conduit through which the liquid remained inside the supply conduit flows reversely into the storing tank by a predetermined amount over time, the supply conduit having a first end portion connected to the storing tank; a liquid feeding section which is arranged at the storing tank or the supply conduit, and which is configured to feed the liquid from the storing tank to a second end portion of the supply conduit; a time measuring section which measures an elapsed time from stop of the liquid feeding by the liquid feeding section; and a control section which is connected to the liquid feeding section and the time measuring section and which is configured to drive the liquid feeding section for a predetermined time based on a length of the elapsed time.
Abstract:
A control system for an oil sand processing apparatus and a method for controlling the apparatus. The apparatus includes a rotatable drum, an oil sand feed mechanism, a drive mechanism for rotating the drum, a first drum support and a second drum support. The control system includes a first drum load sensor associated with the first drum support for sensing a first drum load, a second drum load sensor associated with the second drum support for sensing a second drum load and an oil sand feedrate sensor associated with the oil sand feed mechanism for sensing a feedrate of the oil sand feed mechanism. A controller is provided for controlling a rotation speed of the drum and a feedrate of the oil sand feed mechanism in response to input data from the first drum load sensor, the second drum load sensor and the oil sand feedrate sensor.
Abstract:
An apparatus for processing oil sand to produce a liquid stream comprising water and bitumen and a solid stream comprising solid particles, and a method and control system for controlling the apparatus. The apparatus includes a drum having first and second ends, a conditioning zone adjacent the first end, a compressing zone adjacent the second end and a processing zone therebetween. A rotatable spiral trough, having lifting members therein, extends through each zone for imparting a spiral rolling motion to the oil sand. An oil sand inlet communicates with the conditioning zone, while a water inlet communicates with the processing zone. A liquid stream outlet is located at the first end of the drum, while a solid stream outlet is located adjacent the second end. Preferably, the spiral trough has a width through the compressing zone less than through the processing zone and a height through at least a portion of the compressing zone greater than through the processing and conditioning zones.
Abstract:
An aerosol delivery apparatus is used to deliver an aerosol into a reaction chamber for chemical reaction to produce reaction products such as nanoparticles. A variety of improved aerosol delivery approaches provide for the production of more uniform reaction products. In preferred embodiments, a reaction chamber is used that has a cross section perpendicular to the flow of reactant having a dimension along a major axis greater than a dimension along a minor axis. The aerosol preferably is elongated along the major axis of the reaction chamber.