Abstract:
A multi-channel fluid dispenser includes a reservoir with multiple internal chambers, a multi-channel liquid dispensing head, a plurality of fluid-delivery conduits, and support and positioning elements. The fluid-delivery conduits receive liquid from the chambers in the reservoir and deliver it to the dispensing head. The support and positioning elements are operable to support and position the dispensing head so that it can deliver the liquid from the reservoir to an underlying receiver. The fluid-delivery conduits include one or more optional flow control features that improve the accuracy of the dispensing operation. The multi-channel liquid dispensing head, which includes a valve-support member, a plurality of valves and a plurality of nozzles, is advantageously movable in three directions to facilitate alignment with an underlying receiver. Movement of the dispensing head along two axes is provided by the simple expedient of elongate holes having their long axes aligned in mutually orthogonal directions. In some embodiments, the valves are tiltable away from the vertical so that liquid dispensed from such tilted valves is directed at a non-normal angle into a receiver.
Abstract:
A dosing form for at least one solid reagent for use in conventional organic and inorganic synthesis, in parallel synthesis, and in split and mix synthesis in combinatorial chemistry is provided as compressed tablets each containing the same predetermined amount of said at least one reagent embedded in a polymer matrix comprising beads of a polymer insoluble in the solvents for the intended synthesis, which tablets are capable of disintegrating in said solvent for release of the at least one reagent and disperse the matrix as polymer beads into the solvent. The polymer beads forming the matrix and the reagents of the dosing form can easily be removed by filtration in order to separate these from a formed soluble product. In a method for producing the dosing form, beads of one or more polymers are mixed with the reagents and compressed into tablets after pre-treatment with an aprotic organic solvent.
Abstract:
Each of the batch processing lines has its exclusive one set material processing line independent from others and is operated according to the special algorithm which changes an amount to be prepared in the batch process in a few batches in the final stage of the downstream process based on a calculated total amount required by the downstream process to complete manufacturing. The method for preparing is capable of easily coping with the change of raw materials or prescriptions for the product without increasing or changing existing pipe lines or chemical liquid stock vessels and almost completely avoiding a waste of material.
Abstract:
Enhanced macromixing, mesomixing, and micromixing of multiple discrete reactant streams, particularly for precipitation reactions of low density pumpable fluids, are obtained by controlled continuous high pressure multiple reactant streams flowing into a chemical mixer/reactor. Individual reactant streams are pressurized to about 8,000 to 50,000 psi and achieve velocities up to about 250 meters/second in the final stage of the chemical mixer/reactor. Reactant flows are controlled by a combination of a fixed restriction and a variable driving pump.
Abstract:
Describes a chemical feeder for supplying chemical treating agents, e.g., calcium hypochlorite, to a liquid stream, e.g., an aqueous stream. The chemical feeder includes (a) a housing 11 having a chamber 12 therein for receiving solid chemical material, and a single principal opening 33 in the base 87 of the housing, (b) a valve casing 42 positioned below housing 11 and having a single first opening 36, a single second opening 39, a valve chamber 90 that provides fluid communication between openings 36 and 39, and a valve body 57 that is moveable within valve chamber 90 for selectively regulating the flow of fluid between openings 36 and 39, and (c) a fluid conduit 69 positioned below valve casing 42 and having a fluid inlet 72, a fluid outlet 75 and a feeder opening 84. First opening 36 of valve casing 42 is in fluid communication with opening 33 in base 87 of housing 11, and feeder opening 84 of fluid conduit 69 is in fluid communication with second opening 39 of valve casing 42. Fluid both enters and leaves chamber 12 through principal opening 33 in base 87 of housing 11.
Abstract:
A method of performing a binding assay which comprises the steps of separating a plurality of sample fragments into a plurality of subsamples and applying each of the plurality of subsamples to a respective one of a plurality of binding assays. A system which performs the aforementioned steps is also disclosed.
Abstract:
The maize gene dull1 (du1) of the present invention is a determinant of the structure of endosperm starch. Mutations of du1 affect the activity of at least two enzymes involved in starch biosynthesis, namely the starch synthase, SSII, and the starch branching enzyme, SBEIIa. Du1 codes for a predicted 1674 residue protein, and is expressed with a unique temporal pattern in endosperm but is undetectable in leaf or root. The size of the Du1 product and its expression pattern match precisely the known characteristics of maize SSII. The Du1 product contains two different repeated regions in its unique amino terminus, one of which is identical to a conserved segment of the starch debranching enzymes. The cDNA provided for in the present invention encodes SSII, and mutations within this gene affect multiple aspects of starch biogenesis by disrupting an enzyme complex containing starch synthase(s), starch branching enzyme(s), and possibly starch debranching enzyme(s).
Abstract:
A system and method for accomplishing a plurality of combinatorial processes in parallel comprising a microelectronic and fluidic array (device array) having micron-sized reservoirs, connecting microchannels and reaction cells etched into a substrate. The device array is supported by a station which serves to interface and perform electro-optic measurements of material in the reaction cells of the device array. The device array incorporates a modular configuration with three distinct layers or plates. The device array comprises a top feedthru plate, a center distribution plate and a bottom cell plate. The three plates are stacked vertically and coupled together to form a liquid-tight seal. Reservoirs, microchannels and reactions cells are controllably etched onto the plates using traditional semiconductor fabrication techniques. The top feedthru plate serves as a cover for the device array and contains apertures selectively positioned above the reservoirs located in the center distribution plate. The center distribution plate comprises a plurality of micron sized reservoirs, microchannels, reservoir feeds, cell feeds and overflow feeds for the distribution of reagent fluids to the reaction cells located in the bottom cell plate. The detachable bottom cell plate serves as a microlaboratory tray of reaction cells. Once the proper reagents or other materials are introduced into the reaction cells, the bottom cell plate is decoupled from the device array and removed for incubation or analysis.
Abstract:
A method and a device for dispensing microdoses of aqueous solutions are provided, whereby the substance is transferred by the free surface end of a rodlike transferring element; the temperature of the transferring element is maintained at essentially the dew point of the ambient air during the transfer. The device may comprise a plate-like base to which are affixed a plurality of rods; the unfixed butt ends of the rods are coplanar. The device further comprises a means for maintaining the temperature of the unfixed butt ends of the rods essentially equal to the dew point of the ambient air during transfer of the aqueous substance.
Abstract:
This invention describes a new analysis and dosing system and a method to manufacture such devices based on the latest microelectronic and micromachining working methods. On chip or wafer 1 which consists of the one- or multilayer substrate 2 and one- or multilayer cover 3, are arranged the essential construction components as reactor 6a, detector 6b, converter/collector 6c, injection valve 6d, micropumps, sensors, and valves V1 to V30, of the system, and the connection(s) to a detecting/metering device. The substrate 2 and/or the cover 3 show depressions 4 to build cavities and the co-operation of the elements 6a . . . 6n.