Abstract:
An ionization air purification system for the passenger cabin of vehicles, which modifies the degree of ionization by modifying the energy levels applied to an air ionization device having a tubular dielectric member or a planar dielectric member or ionization source proportional to the change in air flow dynamics and air quality. In one embodiment, an ionization air purification system for the passenger cabin of a vehicle is disclosed. The system includes an ionization device for purifying the air prior to entering into the passenger cabin of the vehicle while minimizing the production of ozone as a by-product; and means for modifying the degree of ionization by modifying the energy levels applied to the ionization tube or ionization source proportional to the change in air flow dynamics or air quality.
Abstract:
An electronic air filter containing a tubular collecting electrode and an ion emitting electrode located concentrically inside of the tube-like collecting electrode, the collecting electrode consists of outer electrically conductive shell and inner layer made of open cell porous material.
Abstract:
An air cleaning apparatus includes ion generation electrode, a collecting electrode, and a support portion. The ion generation electrode is configured to apply a high-voltage to thereby form a high-voltage electric field between the collecting electrode and the ion generation electrode. A passage is formed between the ion generation electrode and the collecting electrode along the high-voltage electric field direction. The support portion is configured to provide electrical isolation and mechanical support for the ion generation electrode and the collecting electrode. A surface of the support portion between the ion generation electrode and the collecting electrode comprises a surface coating layer configured to resist ion bombardment and the accidental arcing. A transformer frequency adjusting system includes a frequency storage cell, a control module, and a drive module, and can work with the air cleaning apparatus, alone, or with other apparatuses.
Abstract:
An electronic air filter having a plurality of electrodes supported by rigid fixtures that are attached to a common case. The rigid fixtures that support the electrodes with different electrical potentials are attached to each other or to a common body in a way that increases or maximizes the creeping discharge path along the surface. Even conductive contaminants do not, therefore, provide an electrical shortage between the electrodes.
Abstract:
A thermal power plant exhaust purification device, the device including a cooling substance flow channel and an exhaust flow channel; the device also includes a spacing member for spacing and exchanging heat between the cooling substance flow channel and the exhaust flow channel, the spacing member having an exhaust contact surface for collecting dust and/or mist contained in the exhaust; the cooling substance flows in the cooling substance flow channel, such that the condensate precipitated from hot exhaust uniformly adheres on the exhaust contact surface, thus forming a uniform and stable water film; on one hand, formation of the concentrated H2SO4 on a dust collecting plate is prevented, and a liquid film flows downwards under gravity, thereby cleaning the H2SO4 adhered on the dust collecting plate timely; on the other hand, the water film is very effective in intercepting droplets and capturing the dust.
Abstract:
A filtration assembly (1), which comprises an enclosure (2) which defines inside it a duct (3) for the passage of a fluid which carries pollutant particles (A) to be removed. At a first transverse cross-section of the duct (3) at least one perforated conducting grille (4) is provided, which is kept at a negative electrical potential, so as to emit into the duct (3) electrons which can bond to the pollutant particles (A), consequently giving them a negative electrical charge. Inside the duct (3), downstream of the grille (4), at least one accumulation plate (5) is provided, kept at a positive electrical voltage, for collecting the pollutant particles (A) charged electrically negatively by the electrons emitted by the grille (4). Moreover, at least one deflection element (6) is arranged proximate to the accumulation plate (5) and is kept at a negative electrical potential in order to generate an electrical field inside the duct (3), with consequent redirection of the negatively electrically charged particles (A) toward the accumulation plate (5). The assembly comprises at least one conducting filament (7), which faces and is proximate to a respective hole (8) of the grille (4). The filament (7) is kept at a negative electrical potential, for the emission of electrons, which can bond to the pollutant particles (A) carried at least by the portion of fluid that passes through the respective hole (8).
Abstract:
An electric dust collecting device according to the invention includes an electric charging unit for electrically charging dust in air, a first filter unit including a plurality of discharge electrode plates spaced apart from each other to define passages therebetween through which dust electrically charged by the electric charging unit passes, and a second filter unit disposed downstream of the plurality of discharge electrode plates in an air flow direction and connected to a ground to cause corona discharge between the plurality of discharge electrode plates and the second filter unit and to collect electrically charged dust. Dust particles electrically charged by the electric charging unit pass through the passages of the first filter unit and then are collected at the second filter unit, and dust particles electrically charged between the first filter unit and the second filter unit are electrically charged by the second filter unit, thus improving electric charging efficiency and dust collecting efficiency.
Abstract:
An electrostatic precipitation air cleaner to reduce ozone output is provided. The electrostatic precipitation air cleaner includes a housing with an air inlet and outlet. Located in the housing are an air mover for moving a stream of air along an airflow path between the inlet and the outlet, an ion emitter electrode positioned in the airflow path downstream of the inlet for ionizing particulates entrained in the stream of air, a collector electrode having an inlet downstream of the ion emitter electrode, and an intermediate element intermediate the ion emitter electrode and the collector electrode. The collector electrode is comprised of a plurality of collector plates spaced apart in a direction transverse to the airflow path. The plates are electrically biased to create and maintain an electric field in the space therebetween to precipitate ionized particulates entrained in the stream of air onto a confronting surfaces of the plates.
Abstract:
Provided is an air purification device, wherein a main body comprises air inlets at two sides. An air extractor at an air outlet draws in air; when entering, the air firstly passes through a negative high voltage wire to carry on a negative charge and be sterilized, and then is mixed with nanoscale water mist sprayed out from a spray pipe and enters a dust collection board; the water mist is electrolyzed from water in a water supply tank by an electrolyzer to generate alkaline water, which is supplied to a water storage tank and atomized by an ultrasonic atomizer prior to being ionized into nanoscale water mist by nano-electrodes so as to be sprayed out; and when air flows through a water mist stream, charged contaminative gases are mixed with the water mist, are separated from the air stream under the action of inertia and an attractive force from the electric field of the dust collection board, and collide with droplets to be captured, intercepted and collected, and when PM 2.5 and other dusts in the air are wetted by the droplets to condense into larger particles, gravity settling is realized, with particles with a certain weight falling into a waste water tank to be discharged out, and separated clean air is released out.
Abstract:
An apparatus 100 includes an air path housing 10, a charging-unit high-voltage electrode 2 to charge airborne microorganisms introduced in the air path housing 10, a charging-unit ground electrode 3 disposed so as to face the charging-unit high-voltage electrode 2, a hydrophilic filter 6 to capture the airborne microorganisms charged by the charging-unit high-voltage electrode 2, a capturing/inactivating-unit high-voltage electrode 5 to polarize the hydrophilic filter 6, and a capturing/inactivating-unit ground electrode 7 disposed so as to face the capturing/inactivating-unit high-voltage electrode 5.