Abstract:
An electrostatic precipitator includes: a chamber having an inlet configured to receive an effluent stream for treatment and an outlet configured to convey a treated effluent stream; and an electrode structure housed within the chamber, the electrode structure being operable to generate a corona for treating the effluent stream to produce the treated effluent stream, wherein the electrode structure includes a comb structure having a shaft and a plurality of teeth extending from the shaft, the corona being generated at a free tip of each tooth in response to a voltage when applied across the electrode structure and the chamber The electrode teeth provide a reduced area from which the corona is generated, thereby improving the corona, but also the reduced size of the electrode teeth compared to existing electrode structures provides a reduced area for the accumulation of particulates and facilitates the shedding of those particulates from the electrodes.
Abstract:
The brush device comprises: a plurality of discharge brushes formed by bundling fibrous wire electrodes; a strip-shaped support board including a first plate-shaped member and a second plate-shaped member which hold the discharge brushes from both sides; and a joining means for joining the first plate-shaped member and the second plate-shaped member. The discharge brushes are disposed at intervals in a longitudinal direction of the support board with their tip end portions protruding from the support board along a width direction of the support board, and the joining means is disposed adjacent to each of the discharge brushes.
Abstract:
An electrostatic air precipitator for emission remediation including, a grounded frame connected to a housing having an upstream direction and a downstream direction with a first ionizing section, having at least a first set of ionizing members and a second set of ionizing members, where the ionizing members of the first set and the second set are electrically isolated from each other and electrically isolated from the grounded frame. Also, the ionizing members of the first set and the ionizing members of the second set are powered by separate power supplies and at least a first collector section is located downstream of the first ionizing section, and the first collector section has at least a first plurality of collector plates.
Abstract:
Air filtration systems and methods for HVAC units in transport compartments are provided. The air filtration systems and methods described herein use electrostatic forces to capture airborne particles and include a modular design so as to be configured to the space requirements of the transport compartment and reduce air flow resistance. The air filtration system includes one or more modular filtration units. Each of the modular filtration units includes a pre-filter section, an ionizing section and a collecting section.
Abstract:
Methods and electrostatic precipitators achieve efficient separation. Scrapers are specifically designed to clean the electrodes in the electrostatic precipitators. Particulates are collected from an entrained air stream by keeping both the discharge and collection electrode surfaces clean during the precipitation process so that the electrical corona discharge remains constant and the electrical field flux lines are maintained. This is accomplished using a plurality of vertical disc electrodes and a plurality of horizontal discharge electrodes preferably combined with the ability to keep the electrodes clean during the exhaust process.
Abstract:
A negative ionizer air purifier is disclosed and it includes a housing, discharge terminals and a fan. The housing is defined with receiving holes corresponding to the discharge terminals, which are disposed through the respective receiving holes. The fan is disposed inside the housing, on which is provided with airflow passages through which the airflow produced by the fan can drive the air near the discharge terminals to move. Thus, the speed of the airflow surrounding near the discharge terminals can be accelerated, such that more air which is not negatively charged can fill in the working area in the vicinity of the discharge terminals, and the air that is already negatively charged can be driven away as quickly as possible, hence the efficiency of the negative ionizer air purifier can be significantly improved.
Abstract:
A discharge electrode using carbon fibers, nanofibers and/or nanotubes to generate the corona discharge. The invention contemplates conductive fiber, such as carbon strands with or without a polymer matrix to form a composite, and a supporting configuration in which the strand is extended along or wrapped helically around a supporting rod that extends along the length of the electrode. A mechanical bias is applied to each strand to maintain tension on the strand. Preferably this includes coil springs extending between bushings mounted on the rod and moveable hemispherical supports slidably mounted on the rod that seat against the strand.
Abstract:
Methods and apparatus for cleaning contaminant byproducts off of ionizing wire electrodes in ionizing blowers are disclosed. Disclosed apparatus include a housing with a gas-flow channel, an stationary ionizing wire, and a rotatable frame with supports for resiliently supporting the stationary ionizing wire within the channel. The ionizing wire produces charge carriers and has a surface that develops a layer of contaminant byproducts when an ionizing signal is applied thereto. The frame is rotatably mounted such that the supports clean the layer of contaminant byproducts off of the surface of the ionizing wire when the frame is rotated, by physical and/or by electrical means. Disclosed methods include providing an ionizing signal to the ionizing wire to thereby produce charge carriers and rotating the frame relative to the housing to thereby clean contaminant byproducts off of the ionizing wire.
Abstract:
Apparatus to capture aerosols, fluid jetting apparatus, and aerosol diverters are disclosed. An example aerosol capture apparatus includes a corona wire to generate ions, and a reference plate positioned below the corona wire and above a substrate on which a fluid is to be deposited, the reference plate to provide a reference potential to direct the ions toward the reference plate to force aerosol particles associated with the fluid toward the reference plate.
Abstract:
Disclosed is a system for filtering airborne particles from an occupied space. The system permits the removal of airborne particles by manipulating both the charge and the size of the particles, thus enabling the capture of particles that most other typical filtration systems leave behind. More specifically, the system captures small airborne particles through the use of a series of electric fields, forcing them to be trapped in a series of filters or collide to form larger particles, whereby their movement and capture are subsequently governed primarily by airflow. The system controls particle behavior by utilizing specific electromagnetic fields to collide particles, capture particles, and deactivate live pathogens that get captured.