Abstract:
A modular liquid waste treatment system is disclosed. In accordance with some embodiments, the system includes a central distribution unit and one or more treatment fins in flow communication therewith. The distribution unit may be configured to receive liquid waste from a given source and distribute that waste, at least in part, to one or more treatment fins. In turn, bacteria present in a given treatment fin treat the liquid waste, and the resultant treated liquid may drain from the fin to the surrounding environment. In some embodiments, a given treatment fin may include porous media providing a large surface area on which bacteria may grow to facilitate treatment. The system may be installed in and/or above the ground, and in some cases may be surrounded, at least in part, with treatment sand and/or other treatment media. The system may be used in aerobic and/or anaerobic processing of liquid waste.
Abstract:
Embodiments of the present invention are generally related to a system and method to remove hydrogen sulfide from sour water and sour oil. In particular, hydrogen sulfide is removed from sour water and sour oil without the need for special chemicals, such as catalyst chemicals, scavenger chemicals, hydrocarbon sources, or a large scale facility. The system and method in the present invention is particularly useful in exploratory oil and gas fields, where large facilities to remove hydrogen sulfide may be inaccessible. The present invention addresses the need for safe and cost effective transport of the deadly neurotoxin. Particular embodiments involve a system and method that can be executed both on a small and large scale to sweeten sour water and sour oil.
Abstract:
A portable, personal advanced-oxidation water treatment system based on ozone and a catalyst such as titanium dioxide that can cycle and purify water to make it potable by removing organic contaminants. The unit can be used for long periods of time without having to replenish the active portions. The unit can be carried in a backpack or in a vehicle. Fresh water is typically loaded into the unit, and the unit is cycled until the water is pure enough to drink. A battery is used to produce ozone and to cycle the water through a reaction vessel and can optionally be charged with a small solar panel The unit can also be powered directly from a vehicle.
Abstract:
The invention relates to a system for collecting, filtering, storing, dosing and recycling rain water, in order to provide emerging watering points or water sources of different volumes and seasonalities. To this end, there is a first impluvium cone (1) for collecting the rain water which then passes through a progressive grid system (5) that separates large impurities (branches and other), sending them to a surplus/waste channel (6) via a branching element (7). The volume of water passes through a siphon filter (8), to a receptacle (12) with labyrinths and sinuosities, to then access a modular vortex filter (16), and from there a receptacle/container (21), wherefrom the water creates sources or watering points (28), (46) and (35) for the supply of clean water for any use.
Abstract:
A two-part dispensing device for a pool having a dispensing saddle with a static port therein for continual delivery of a first dispersant and a hold for floatingly supporting itself and an exchangeable dispensing pod therein with the dispensing pod having a dynamic port and a static port for a continual delivery of a dispersant wherein the static port delivery of a dispersant maintains the pool at a safe level when there is no human bather load on the pool and the condition of the disperant in the dispensing pod can be determined by the orientation of the dispensing saddle and the dispensing pod in the pool.
Abstract:
A system and method to extract particulate material from a liquid. The system includes a cylindrical tank forming a hollow cavity and having a top end and a bottom end, a cyclonic separator rigidly attached to the top end of the cylindrical tank and in fluid communication with the hollow cavity, an inflow line coupled to the cyclonic separator, an outflow line coupled to the cyclonic separator, a pump in fluid communication with outflow line, and a fluid reservoir in fluid communication with the inflow line. The method includes capturing particulate matter and liquid in a reservoir, partially separating the particulate matter and liquid within the reservoir, channeling the partially separated particulate matter and liquid to a cyclonic separator positioned above a tank, separating the partially separated particulate matter and liquid within the cyclonic separator, and capturing the particulate matter within the tank.
Abstract:
The present invention supplies partitioned water treatment systems that possess a plurality of chambers and vertical filtration units, and are operative to control and filter surface runoff water. Such systems are typically placed inline with surface runoff water conveyance system infrastructure, such as pipes, channels, and water storage units.
Abstract:
A micro bubble generating system includes a shell having a well for retaining a first liquid to immerse an object. A micro bubble apparatus is provide to the shell for providing a pressurized mixture of a second liquid and a dissolved gas into the well so as to create a plurality of micro bubbles within the first liquid for engaging the object.
Abstract:
A microclarification system is disclosed which can be used to separate solid particulates dispersed within a base fluid such as water. The microclarification system includes a plurality of microfluidic separator units disposed between and in fluid communication with a fluid inlet manifold and a fluid outlet manifold. The microclarification system enforces lamellar flow of fluid though it and as a result the rate at which particles settle is enhanced within a collection chamber associated with each microfluidic separator unit and through which the fluid being purified must pass. Each microfluidic separator unit includes a microfluidic outlet microchannel disposed between the microfluidic collection chamber and the fluid outlet manifold, and a gas-liquid flushing module configured to purge particulates from the collection chamber during a collection chamber purge cycle. Optionally, each microfluidic separator unit may include a microfluidic inlet microchannel. The system holds promise in municipal water purification among other applications.
Abstract:
A system is provided for separating particulates dispersed within a base fluid wherein at least one of the particulates and the base fluid is an organic liquid. The system relies on a microfluidic separation device comprising a microchannel in fluid communication across a microporous body with a collection chamber. Particulates and a portion of the base fluid traverse the microporous body under the influence of an external force field and are collected in the collection chamber. A first fluid flow having a first flow rate through the microchannel together with the microporous body operationally generate a second fluid flow within the collection chamber as base fluid and particulates traverse the microporous body and enter the collection chamber, and as base fluid re-traverses the microporous body and re-enters the microchannel, the second fluid flow having a flow rate which is a fraction of the first flow rate.