Abstract:
Glass preforms for optical fibers or the like having refractive index profiles which vary in stepped or graded fashion across the preform, are made from porous glass preforms by introducing a first dopant into the porous preform during manufacture, partially sintering the preform to selectively modify the internal surface area thereof, introducing a second vapor-infusible dopant into the selectively sintered preform to cause selective doping of the porous glass, and then consolidating the resulting doped preform to clear glass.
Abstract:
An apparatus for producing a multi-component glass fiber preform includes a multi-conduit burner 31 having five concentric conduits 31a-31e, the center three conduits (a), (b) and (c) being flush with each other at their ends, the fourth conduit d, interposed between the third (c) and outermost conduit (e) extends axially beyond the first three. The burner has a flange 33 to direct the flame onto a substrate.In operation glass raw material is fed through the inner-most conduit (a) by a carrier gas. The material emitted from conduits (a -d) is mixed in a mixing area 32. Glass raw material and a nebulized dopant salt solution are emitted and burned with hydrogen gas depositing particulate glass material or soot on an adjacent substrate to produce a multi-component glass fiber preform.
Abstract:
The present invention relates to a new glass material applicable in those situations where thermal and/or mechanical shock would limit the use of other glass materials presently available. Dopants are deposited into the interconnected pores of a porous glass in a non-uniform manner such that upon consolidation and cooling the final article has its surface under compressive stress. Dopants may also be added to control color and other appearance features. A porous silicate glass is washed with sodium hydroxide followed by immersing the washed glass in a liquid solution of a dopant in a liquid solvent therefor to stuff the pores of the washed glass with the solution. Thereafter, the solvent is removed from the pores and the pores are collapsed by a heating step.
Abstract:
A method for manufacturing an optical fiber preform includes: adding an alkali metal element or an alkaline earth metal element to an inner surface of a glass pipe made of silica-based glass; reducing a diameter of the glass pipe after the adding; etching an inner surface of a continuous section of the glass pipe in a longitudinal direction after the reducing; and collapsing the glass pipe after the etching. At least one of the adding, the reducing, the etching, and the collapsing includes performing a local etching on an inner surface of a section of the glass pipe that is shorter than the continuous section.
Abstract:
A silica container contains a substrate having a rotational symmetry, containing mainly a silica, and gaseous bubbles in a peripheral part of the substrate; a transparent silica glass in an inner peripheral part of the substrate; and an inner layer, formed on an inner surface of the substrate and containing a transparent silica glass; wherein the substrate contains Li, Na, and K in a total concentration of 50 or less ppm by weight; the substrate has a linear light transmittance of 91.8% to 93.2% at a light wavelength of 600 nm; the inner layer contains Li, Na, and K in a total concentration of 100 or less ppb by weight and at least one of Ca, Sr, and Ba in a total concentration of 50 to 2000 ppm by weight; and the inner layer has a linear light transmittance of 91.8% to 93.2% at a light wavelength of 600 nm.
Abstract:
A method of manufacturing a glass preform is provided. The method including, vaporizing an alkali metal compound or an alkali earth metal compound and being brought the alkali metal compound or the alkali earth metal compound into contact with a hydroxyl group on a surface of porous silica glass and dehydrating the porous silica glass, and sintering the dehydrated porous silica glass and forming a transparent glass body.
Abstract:
The present invention provides a method of making rare earth (RE) doped optical fiber using BaO as co-dopant instead of Al or P commonly used for incorporation of the RE in silica glass by MCVD and solution doping technique. The method comprises deposition of particulate layer of GeO2 doped SiO2 with or without small P2O5 for formation of the core and solution doping by soaking the porous soot layer into an aqueous solution of RE and Ba containing salt. This is followed by dehydration and sintering of the soaked deposit, collapsing at a high temperature to produce the preform and drawing of fibers of appropriate dimension. The use of Ba-oxide enables to eliminate unwanted core-clad interface defect which is common in case of Al doped fibers. The fibers also show good RE uniformity, relatively low optical loss in the 0.6-1.6 μm wavelength region and good optical properties suitable for their application in amplifiers, fiber lasers and sensor devices.
Abstract:
An optical fiber has: a core made of silica glass in which a rare earth element and aluminum have been added; an inner cladding layer that is formed around the core, is made of silica glass in which at least any one of an alkali metal and an alkali earth metal has been added, and has a refractive index lower than a refractive index of the core; and an outer cladding layer that is formed around the inner cladding layer and has a refractive index lower than the refractive index of the inner cladding layer.
Abstract:
A method of manufacturing a glass preform is provided. The method including, vaporizing an alkali metal compound or an alkali earth metal compound and being brought the alkali metal compound or the alkali earth metal compound into contact with a hydroxyl group on a surface of porous silica glass and dehydrating the porous silica glass, and sintering the dehydrated porous silica glass and forming a transparent glass body.