Abstract:
A tellurium oxide glass that is stable, strong and chemically durable exhibits low optical loss from the UV band well into the MIR band. Unwanted absorption mechanisms in the MIR band are removed or reduced so that the glass formulation exhibits optical performance as close as possible to the theoretical limit of a tellurium oxide glass. The glass formulation only includes glass constituents that provide the intermediate, modifiers and any halides (for OH— reduction) whose inherent absorption wavelength is longer than that of Tellurium (IV) oxide. The glass formulation is substantially free of Sodium Oxide and any other passive glass constituent including hydroxyl whose inherent absorption wavelength is shorter than that of Tellurium (IV) oxide. The glass formulation preferably includes only a small residual amount of halide.
Abstract:
Disclosed is an amplifying optical fiber having a central core and an optical cladding surrounding the central core. The central core is based on a silica matrix that includes nanoparticles, which are composed of a matrix material that includes doping ions of at least one rare earth element. The amplifying optical fiber can be employed, for example, in an optical amplifier and an optical laser.
Abstract:
The present invention is generally directed to a method of making a hollow-core photonic band gap preform from a specialty glass by pressing a specialty glass through a die to form a tube wherein the outer transverse shape of the tube is a hexagon, triangle, quadrilateral, or other polygon; stretching the tube to form a micro-tube with approximately the same outer transverse shape as the tube; stacking a plurality of micro-tubes into a bundle minimizing voids between adjacent micro-tubes and forming a central longitudinal void wherein the plurality of micro-tubes within the bundle comprise an inner structured region of the preform and the central void of the bundle comprises a hollow core in the preform; and inserting the bundle into a jacket tube. Also disclosed are the hollow-core photonic band gap preform and fiber formed by this method.
Abstract:
An optical fiber, which has a zero-material dispersion wavelength equal to or greater than 2 μm, and a high nonlinear susceptibility χ3 equal to or greater than 1×10−12 esu, and uses tellurite glass having sufficient thermal stability for processing into a low loss fiber, employs a PCF structure or HF structure having strong confinement into a core region. This enables light to propagate at a low loss. The size and geometry of air holes formed in the core region, and the spacing between adjacent air holes make it possible to control the zero dispersion wavelength within an optical telecommunication window (1.2-1.7 μm), and to achieve large nonlinearity with a nonlinear coefficient γ equal to or greater than 500 W−1 km−1.
Abstract:
A photonic band gap fiber and method of making thereof is provided. The fiber is made of a non-silica-based glass and has a longitudinal central opening, a microstructured region having a plurality of longitudinal surrounding openings, and a jacket. The air fill fraction of the microstructured region is at least about 40%. The fiber may be made by drawing a preform into a fiber, while applying gas pressure to the microstructured region. The air fill fraction of the microstructured region is changed during the drawing.
Abstract:
To overcome problems of fabricating conventional core-clad optical fibre from non-silica based (compound) glass, it is proposed to fabricate non-silica based (compound) glass optical fibre as holey fibre i.e. one contining Longitudinal holes in the cladding. This removes the conventional problems associated with mismatch of the physical properties of the core and clad compound glasses, since a holey fibre can be made of a single glass composition. With a holey fibre, it is not necessary to have different glasses for the core and cladding, since the necessary refractive index modulation between core and cladding is provided by the microstructure of the clad, i.e. its holes, rather than by a difference in materials properties between the clad and core glasses. Specifically, the conventional thermal mismatch problems between core and clad are circumvented. A variety of fibre types can be fabricated from non-silica based (compounds) glasses, for example: single-mode fibre; photonic band gap fibre; highly non-linear fibre; fibre with photosensitivity written gratings and other refractive index profile structures; and rare-earth doped fibres (e.g. Er, Nd, Pr) to provide gain media for fibre amplifiers and lasers.
Abstract:
An optical fiber having a length can include a core and at least one cladding disposed about the core, where the one cladding can comprise at least first volumetric regions having a first refractive index n1 and second volumetric regions having a second refractive index n2, different from n1, and the first and second volumetric regions in any cross-section taken through the fiber can be randomly intermingled with one another, where the random intermingling of the first and second volumetric regions changes with changes in the location of the cross-section along the length of the fiber.
Abstract:
Microstructured optical fibre is fabricated using extrusion. The main design of optical fibre has a core suspended in an outer wall by a plurality of struts. A specially designed extruder die is used which comprises a central feed channel, flow diversion channels arranged to divert material radially outwards into a welding chamber formed within the die, a core forming conduit arranged to receive material by direct onward passage from the central feed channel, and a nozzle having an outer part in flow communication with the welding chamber and an inner part in flow communication with the core forming conduit, to respectively define an outer wall and core of the preform. With this design a relatively thick outer wall can be combined with thin struts (to ensure extinction of the optical mode field) and a core of any desired diameter or other thickness dimension in the case of non-circular cores. As well as glass, the extrusion process is suitable for use with polymers. The microstructured optical fibre is considered to have many potential device applications, in particular for non-linear devices, lasers and amplifiers.
Abstract:
High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
Abstract:
The present invention relates to microspheres (i.e., beads) that comprise titania and bismuth oxide. The glass microspheres further comprise zirconia. The invention also relates to retroreflective articles, and in particular pavement markings, comprising such microspheres.