Abstract:
A process for producing a microporous polymeric object to improve the degree of freedom for its various properties, compared to conventional processes, includes: mixing a block copolymer made of three or more kinds of segments with a polymer, wherein one or more of the segments are made of monomer units having a first functional group forming ionic and/or hydrogen bond, the segments constitute a co-continuous structure having mutually-independent and continuous regions due to a phase separation based on incompatibility between the segments, and the polymer has, at other than polymer chain terminals, a second functional group forming such bond with the first functional group, thereby allowing the segments to associate with the polymer at many points; forming a co-continuous structure including a region composed of the polymer and the segments due to the phase separation; and removing the polymer from the region by weakening the bond between the functional groups.
Abstract:
A process for producing a microporous polymeric object to improve the degree of freedom for its various properties, compared to conventional processes, includes: mixing a block copolymer made of three or more kinds of segments with a polymer, wherein one or more of the segments are made of monomer units having a first functional group forming ionic and/or hydrogen bond, the segments constitute a co-continuous structure having mutually-independent and continuous regions due to a phase separation based on incompatibility between the segments, and the polymer has, at other than polymer chain terminals, a second functional group forming such bond with the first functional group, thereby allowing the segments to associate with the polymer at many points; forming a co-continuous structure including a region composed of the polymer and the segments due to the phase separation; and removing the polymer from the region by weakening the bond between the functional groups.
Abstract:
The preparation and use of novel porous poly(aryl ether) articles is disclosed. The porous articles are prepared from blends of poly(aryl ether) polymers with polyimides by selectively decomposing the polyimide phase. The preferred reagents used to decompose the polyimide phase include monoethanolamine and tetramethylammonium hydroxide. The porous articles can be configured as a single layer or as a multilayer article. The porous articles of the present invention are unique that at least one of the layers exhibits a narrow pore size distribution. The articles of the present invention can be used as a porous media for a broad range of applications, including porous membranes for fluid separations, such as microfiltration, ultrafiltration, and gas separation, as a battery separators, and as a sorption media.
Abstract:
Functionalized porous poly(aryl ether ketone) articles are prepared by reacting ketone groups in the backbone of poly(aryl ether ketone) polymer with a primary amine reagent. Preferred functional primary amines are primary aliphatic amines or substituted hydrazines containing one or more target functional groups including polar groups, such as hydroxyl groups, ˜OH, amino groups, ˜NH2, ˜NHR, ˜NRR′, and ethylene oxide groups, ˜OCH2CH2—, negatively or positively charged ionic groups, such as ˜SO3−, ˜COO−, and ˜NH4+groups, hydrophobic groups such as siloxane or perfluorcarbone groups, and non-polar groups, such as linear or branched hydrocarbon groups. The functionalized porous poly(aryl ether ketone) article can be prepared by reacting primary amine with a pre-formed, shaped porous poly(aryl ether ketone) article or by functionalizing the surface of a non-porous precursor article that is subsequently converted into a porous article.
Abstract:
The present invention relates to a process for the manufacture of a porous polymer; wherein a composition comprising a polymerizable component, a porogen having an inverse temperature dependent solubility and a solvent are polymerized at a temperature around the cloud point temperature of the composition. The porous polymers obtainable according to the process of the invention are useful, for example, as materials for the manufacture of biomedical devices and prostheses, including ophthalmic devices such as contact lenses or artificial corneas.
Abstract:
Porous poly(aryl ether ketone) Membranes, Processes for Their Preparation and Use Thereof Porous poly(aryl ether ketone) (PAEK) articles are prepared from PAEK/polyimide blends by selective chemical decomposition and subsequent removal of the polyimide phase. Porous PAEK articles exhibit highly interconnected pore structure and a narrow pore size distribution. The porous PAEK articles of the present invention can be utilized as a porous media for a broad range of applications, including membranes for fluid separations, such as microfiltration, ultrafiltration, nanofiltration, and as a sorption media.
Abstract:
The preparation and use of novel porous poly(aryl ether) articles is disclosed. The porous articles are prepared from blends of poly(aryl ether) polymers with polyimides by selectively decomposing the polyimide phase. The preferred reagents used to decompose the polyimide phase include monoethanolamine and tetramethylammonium hydroxide. The porous articles can be configured as a single layer or as a multilayer article. The porous articles of the present invention are unique that at least one of the layers exhibits a narrow pore size distribution. The articles of the present invention can be used as a porous media for a broad range of applications, including porous membranes for fluid separations, such as microfiltration, ultrafiltration, and gas separation, as a battery separators, and as a sorption media.
Abstract:
The present invention discloses a method for preparing a hydrophilic porous polymeric material comprising the step of mixing a hydrophilic polymeric material with a hydrophobic material; solvent sintering the surface of the hydrophilic polymeric material with water or an aqueous solution; and removing the hydrophobic material contained within the hydrophilic polymeric material with a massive organic solvent. Thus, the hydrophilic porous polymeric material with high porosity and stable structure is rapidly mass produced.
Abstract:
A microporous polybenzimidazole membrane having a uniform pore structure and a narrow pore size distribution, and a process for making the membrane. The process requires coating a polybenzimidazole powder with a high temperature stable polymer and compression molding the coated particles at a temperature in the approximate range of 435.degree.-450.degree. C. to form a sheet or membrane. The polymer is then extracted from the sheet, leaving a fine, uniform, polybenzimidazole microporous structure.