Abstract:
A transparent article includes a continuous polyester matrix having at least one incompatible filler dispersed therein. The incompatible filler provides domains in the polyester matrix, each domain having a particular dimension, thus providing a range of dimensions for the domains in the article. To create haze, the dimensions are within the range of from about 380 nm to about 720 nm. Once the range of dimensions is determined, a light absorbent composition can be found which absorbs light at a range of wavelengths that at least substantially covers the range of dimensions of the domains. In doing so, it has been found that the haze of the article can be substantially masked. Method for producing the article and for masking the haze are also provided.
Abstract:
The present invention relates to a thermoplastic polymer composition with enhanced gas barrier properties comprising a thermoplastic polymer, an antiplasticizer and a chain extender. Suitable antiplasticizers and suitable chain extenders are disclosed herein. Other embodiments of the present invention include a method to produce such a thermoplastic composition, an article comprising such a thermoplastic composition, and a method for making such an article.
Abstract:
A container comprising a polyester composition with enhanced mechanical properties is provided. The polyester composition comprises a polyester and a creep control agent. In particular embodiments, the polyester composition comprises a polyester, a creep control agent, and a gas barrier additive. In particular embodiments, the creep control agents are molecules or polymers comprising dianhydrides, bis-lactams, bis-oxazoles, and epoxides.
Abstract:
A high barrier composition to a gas or organic liquid usable as a coating or layer on an article. The composition includes a blend of polyetheramine resin and at least one additive being a highly hydrolyzed organic compound, preferably of a low molecular weight, either with our without boric acid. Articles employing the gas barrier composition also constitute a part of this invention.
Abstract:
An aromatic polyester resin composition, comprising: a melt-kneaded product of 99-70 wt. parts of an aromatic polyester resin and 1-30 wt. parts (providing a total of 100 wt. parts together with the aromatic polyester resin) of a polyglycolic acid resin, wherein the aromatic polyester resin is an aromatic polyester resin polymerized with an antimony compound (catalyst), the polyglycolic acid resin is a polyglycolic acid resin obtained by ring-opening polymerization of glycolide, and the composition further contains a metal-deactivating agent in a proportion of 17-500 mol. % with respect to the antimony in the aromatic polyester resin. As a result, gas generation during the melt-processing of a composition obtained by adding a relatively small amount of polyglycolic acid resin to an aromatic polyester resin is effectively suppressed to provide an aromatic polyester resin composition with a good gas-barrier property.
Abstract:
The present invention relates to a polyester composition having a liquid antiplasticizer. The composition has improved gas barrier properties with reduced degradation and plate out effects on molds and rollers. Other embodiments of the present invention disclosed herein are articles made from the composition and methods to make such articles.
Abstract:
Gas barrier layers and composites contain a low gel sheet produced from a composition containing a thermoplastic polyurethane (TPU), a hydroxyl functional copolymer, and a gel reducing additive. The gel reducing additive has functional groups that can react with isocyanate groups to reduce gel formation during the processing of blends of urethane containing polymers and hydroxyl functional polymers. Multilayer composites containing the low gel sheets can be made into inflatable membranes for containing an inflationary gas. In a particularly preferred embodiment, the membranes are used as bladders of cushioning devices in the soles of shoes, particularly athletic shoes.
Abstract:
Thermoplastic compositions comprising polyacrylonitriles that contain greater than 90% acrylonitrile as monomer, or copolymers of such polyacrylonitriles with an olefinic unsaturated co-monomer, can be formed by the use of certain compatibilizers and/or thermal stabilizers. Other thermoplastic compositions comprising the high nitrile polyacrylonitriles can be obtained by melt blending the polyacrylonitriles with certain aromatic engineering thermoplastic polymers in the presence of compatibilizers and thermal stabilizers. All of the foregoing high nitrile compositions have been found to possess good optical and gas barrier properties, and good stress crack resistance.
Abstract:
The present invention provides a gas barrier layered product exhibiting a high oxygen barrier property independent of humidity and having excellent transparency, and a method of manufacturing the same. The gas barrier layered product includes a base material and a layer stacked on the base material. The layer is formed of a composition includes: a hydrolyzed and condensed product of a compound (L) containing a metal atom to which at least one group selected from a halogen atom and an alkoxy group is bonded; a neutralized product of a polymer containing a functional group selected from a carboxyl group and a carboxylic anhydride group; and a compound (D). At least a part of a —COO— group contained in the at least one functional group is neutralized by a metal ion having a valence of two or more. The compound (L) includes at least one compound (A) in which an organic group having at least one characteristic group, selected from a halogen atom, a mercapto group and a hydroxyl group, further bonded to the metal atom. The compound (D) is a compound bonding to both the —COO— group of the neutralized product of the polymer and a group on the surface of the hydrolyzed and condensed product.
Abstract:
A polymer composition includes a polymer having a glass transition temperature of 120° C. to 400° C. as a simple substance of the polymer and an organic modified layered silicate having a decomposition starting temperature of 190° C. to 350° C. and contained in the polymer. (1) A film including the polymer composition, (2) a gas barrier film including the film and an organic/inorganic hybrid layer obtained by the sol-gel method and provided on the film, (3) a substrate comprising the film or the gas barrier film, and (4) an image display device comprising at least an anode, a light-emitting organic thin film layer and a cathode on the film or the gas barrier film are also disclosed. A polymer composition having both superior heat resistance and superior gas baffler properties, a film comprising the polymer composition, and a gas baffler film having the film, as well as a substrate and image display device exhibiting superior precision and durability are provided.