Abstract:
The present invention relates to the fields of biomass technology, and more precisely to applications of packaging, and coating products for food and cosmetics. The present invention relates to a method of modifying a polymeric polysaccharide matrix and to a method of coating a product to impart new properties to the product. The present invention further relates to a modified polymeric polysaccharide matrix, to a product being coated with a modified polymeric polysaccharide matrix and uses thereof.
Abstract:
This invention relates to antioxidants and combinations of antioxidants used to prevent oxidation of pharmaceutical and nutraceutical products in the form of powders, granulates, tablets, emulsions, gels and the like comprising one or more fatty acids and/or fatty acid derivatives and, optionally, at least one carbohydrate carrier alone or together with vitamins, minerals and/or pharmaceuticals. In particular, the invention concerns the use of antioxidants to reduce oxidation of powders, tablets, gels and emulsions comprising high concentrations and high doses of omega-3 fatty acids or derivatives thereof.
Abstract:
Novel aldehyde-functionalized polysaccharide compositions containing pendant dialdehyde groups are described that are more stable in aqueous solution than oxidized polysaccharides. The aldehyde-functionalized polysaccharides may be reacted with various amine-containing polymers to form hydrogel tissue adhesives and sealants that may be useful for medical applications such as wound closure, supplementing or replacing sutures or staples in internal surgical procedures such as intestinal anastomosis and vascular anastomosis, tissue repair, preventing leakage of fluids such as blood, bile, gastrointestinal fluid and cerebrospinal fluid, ophthalmic procedures, drug delivery, and preventing post-surgical adhesions.
Abstract:
Ultra-fine microcrystalline cellulose compositions are disclosed which comprise co-attrited microcrystalline cellulose and a hydrocolloid. The compositions have a mean particle size of less than 10 microns. The compositions are prepared by subjecting a high solids mixture of microcrystalline cellulose and a hydrocolloid to high shear forces in the presence of an anti slip agent preferably an aqueous solution of an inorganic salt. The compositions are especially useful in food, pharmaceutical and cosmetic and industrial applications.
Abstract:
Hydrocolloid gum compositions, methods of forming the same, and products formed therefrom. The composition may comprise a hydrocolloid gum, such as xanthan gum, a cellulose thickener, and a solvent component. The solvent component may comprise a lactate ester and, optionally, an alkylene glycol alkyl ether.
Abstract:
A hemostatic textile material to stop bleeding comprising a dialdehyde cellulose (DAC) carrier wherein the degree of oxidation of the dialdehyde cellulose varies from about 1.5% to 12%; and a blood coagulation factor selected from the group consisting of chitosan and gelatin; the blood coagulation factor being chemically immobilized thereon; and further optionally comprising a bacteriolytic agent selected from the group consisting of a lysozyme enzyme, silver nitrate, and chlorhexidine; and further optionally comprising a selected component that prevents hemolysis, the component selected from the group consisting of tranexamic acid or ε-aminocaproic acid chemically immobilized thereon.
Abstract:
This invention relates to a process for preparing bioabsorbable oxidized cellulose comprising combining cellulose material, with nitrogen dioxide and a nonaqueous solvent chosen from the class of perfluorinated tertiary amines. This invention also relates to a method of oxidizing cellulose material comprising introducing a solvent into the vessel, circulating the solvent through the cellulose material, adding nitrogen dioxide to said vessel containing the solvent and cellulose in the required amounts, circulating the solution for 7 to 24 hours while controlling the reaction temperature, and isolating the oxidized material. Preferably, isolation of the oxidized product is followed by first washing the oxidized cellulose material with cold water, then washing the oxidized cellulose material with an aqueous alcohol solution several times, then washing the material with 100% alcohol several times, and finally drying the oxidized material.
Abstract:
The present invention is directed to a multilayered fabric comprising a first absorbable nonwoven fabric and a second absorbable woven or knitted fabric.
Abstract:
A delivery system for a haemostatic material comprises a self adhesive strip of a bioadhesive, especially pectin and a glycerol plasticiser. The haemostatic material may be a microdispersed oxidised cellulose which is dispersed in the strip. The strip is applied to control localised bleeding from surface skin wounds such as shaving nicks or minor cuts. The pectin dissolves in the blood, releasing the haemostatic material to control the bleeding.
Abstract:
The present invention is directed to hemostatic wound dressings containing a fabric made from biocompatible, aldehyde-modified polysaccharide fibers; and a porous, polymeric matrix made from a biocompatible, water-soluble or water-swellable polymer, dispersed at least partially through the fabric, to methods of making such wound dressings and to methods of providing hemostasis to a wound.