Abstract:
The present disclosure relates generally to filled polyimides that can be used in films and articles comprising the films. The films are useful in coverlay applications and have advantageous optical properties. The present disclosure also relates to blends of polyimide precursor, polyacrylonitrile, and cellulosic polymer which can be used to obtain the filled polyimides.
Abstract:
The present invention provides a dental self-adhesive resin cement having clinically-acceptable adherability for various adherends without pre-treatment with primers. Specifically, there is provided the dental self-adhesive composite resin cement comprising: (a) a radical polymerizable monomer, (b) a polymerizable monomer having a phosphonic acid group and/or a phosphoric acid ester group, (c) a polymerizable monomer having a dibasic acid carboxyl group, (d) a filler, and (e) a polymerization catalyst.
Abstract:
A thermally curable adhesive in strip or film form, having a thickness in the range of 0.1 to 5 mm, containing: a) at least one reactive epoxy prepolymer, b) at least one latent hardener for epoxies, and c) one or more elastomers that are selected from: c1) thermoplastic polyurethanes, c2) thermoplastic isocyanates, and c3) block copolymers having thermoplastic polymer blocks. Further components can additionally be contained, for example a blowing agent for foaming. The adhesive in the uncured state at 22° C. is bendable or wrappable and can be extended at least 100% before tearing. It can be laid onto a foil. It can be used, for example, for adhesive bonding of planar, tubular, or cylindrical components, preferably components made of metal, wood, ceramic, or ferrites.
Abstract:
A dicing/die-bonding film including a pressure-sensitive adhesive layer (2) on a supporting base material (1) and a die-bonding adhesive layer (3) on the pressure-sensitive adhesive layer (2), wherein a releasability in an interface between the pressure-sensitive adhesive layer (2) and the die-bonding adhesive layer (3) is different between an interface (A) corresponding to a work-attaching region (3a) in the die-bonding adhesive layer (3) and an interface (B) corresponding to a part or a whole of the other region (3b), and the releasability of the interface (A) is higher than the releasability of the interface (B). The dicing/die-bonding film is excellent in balance between retention in dicing a work and releasability in releasing its diced chipped work together with the die-bonding adhesive layer.
Abstract:
A polymeric composition comprising a copolymer of ethylene with at least another monomer comprising at least a heteroatom, a tackifier, less than 10% of a compatible plasticizer or blend of plasticizers and a volatile material. The compositions are able to deliver effectively the volatile material incorporated for a long time and also have good adhesion properties on most substrates.
Abstract:
Method for producing diecuts from heat-activatable adhesive films which comprises applying a layer of heat-activatable adhesive material to a carrier material having a glass transition temperature at least 20° C. lower that that of the adhesive, laminating the heat-activatable layer onto a release liner at a temperature between the glass transition temperature of the release liner and heat activatable adhesive and then diecutting the heat-activatable adhesive layer on the release liner.
Abstract:
Self-adhesive, flexible sealing tapes, comprising at least one flexible, self-adhesive core or at least one flexible, self-abhesive carrier layer provided with an envelope or two-sided coating consisting of a second adhesive system.
Abstract:
It is an object of the present invention to provide a display strip with which the step of attaching a product-enclosed bag is easily automated and a product-enclosed bag is easily bonded again after the bag is once detached. The present invention relates to a display strip for arranging and attaching a plurality of product-enclosed bags for the display, which comprises at least a substrate layer and a sealant layer, the sealant layer being bondable to a surface layer of the bag by thermocompression bonding and having no pressure sensitive adhesive property before the thermocompression bonding, but being bondable to the bag again owing to exposure of a pressure sensitive adhesive face in the case of peeling of the bag bonded by thermocompression bonding.
Abstract:
Method of bonding labels to hydrophobic substrates, a pressure-sensitive hotmelt adhesive being applied wholly or partly to the label or to the substrate at an area opposite the label, then bringing label and substrate together and bonding them, characterized in that the pressure-sensitive hotmelt adhesive is water-soluble in alkaline solution and the label is selected from i) water-permeable labels having a water absorbency (Cobb value) of greater than 0.3 g/m2 per 20 sec, ii) perforated labels which on the bonded surfaces have a perforation or cutouts of below 10%. Further described is a label which is coated with a water-soluble pressure-sensitive hotmelt adhesive and which exhibits a high water absorbency and/or, where appropriate, contains perforations or cutouts on the bonded surface.
Abstract translation:将标签与疏水性基材结合的方法,将压敏热熔粘合剂全部或部分施用于标签或与标签相对的区域施加到基材上,然后将标签和基材粘合在一起并粘合,其特征在于压敏 热熔粘合剂在碱性溶液中是水溶性的,标签选自i)具有大于0.3g / m 2/20秒的吸水性(Cobb值)的透水性标签,ii)在粘合表面上具有的多孔标签 穿孔或切口低于10%。 进一步描述的是涂覆有水溶性压敏热熔粘合剂并且表现出高吸水性的标签和/或适当地在接合表面上包含穿孔或切口。
Abstract:
The invention relates to a dicing die-bonding film having a pressure-sensitive adhesive layer (2) on a substrate material (1) and a die-bonding adhesive layer (3) on the pressure-sensitive adhesive layer (2), wherein the adhesion of the pressure-sensitive adhesive layer (2) to the die-bonding adhesive layer (3), as determined under the conditions of a peel angle of 15° and a peel point moving rate of 2.5 mm/sec. at 23° C., is different between a region (2a) corresponding to a work attachment region (3a) and a region (2b) corresponding to a part or the whole of the other region (3b), in the die-bonding adhesive layer (3), and satisfies the following relationship: adhesion of the pressure-sensitive adhesive layer (2a)