Abstract:
Processes for producing mixed alcohols from mixed olefins and the catalyst systems for making such alcohols are provided. Additionally, processes for producing fuel compositions having mixed alcohols prepared from mixed olefins are also provided as embodiments of the present invention. The catalyst systems include a dual phase catalyst system that includes a water soluble acid catalyst and a solid acid catalyst.
Abstract:
A process for the manufacture of butanol, acetone and/or other renewable chemicals is provided wherein the process utilises one or more of the group comprising by-products of the manufacture of malt whisky, such as pot ale and/or spent lees, biomass substrates, such as paper, sludge from paper manufacture and spent grains from distillers and brewers, and diluents, such as water and spent liquid from other fermentations. The process comprises treating a substrate to hydrolyse it and fermenting the treated. Also provided is a biofuel comprising butanol manufactured according to the process of the invention.
Abstract:
The invention discloses a process for hydrolyzed reforming of the ligneous cellulose biomass to produce bio-gasoline, which directly transfers the hydrolyzed-material liquid obtained from ligneous cellulose biomass through hydrolyzing into aqueous catalytic reforming system, the feed subjects to aqueous catalytic reforming reaction in low-temperature reforming reactor filled with catalyst Ni/SiO2—Al2O3 and in high-temperature reforming reactor filled with catalyst Ni/HZSM-5 in turn, the reactant is condensed and phase-separated: uncondensed bio-gasoline is absorbed by absorption liquid-C6 alkane, condensed liquid is phase-separated through phase-separator, bio-gasoline is obtained in the upper layer of the phase-separator. The invention creates a new process for producing high-quality liquid fuel oil using biomass as feedstock, which can automatically layer and separate, omitting the step of rectifying and purifying product. The feedstock is cheap and broadly available. The product can directly used in the present vehicle-carried engine system, and have prosperous market prospect.
Abstract:
Processes for producing mixed alcohols from mixed olefins and the catalyst systems for making such alcohols are provided. Additionally, processes for producing fuel compositions having mixed alcohols prepared from mixed olefins are also provided as embodiments of the present invention. The catalyst systems include a dual phase catalyst system that includes a water soluble acid catalyst and a solid acid catalyst.
Abstract:
Gasoline fuel formulation containing (i) tricyclene, which is suitably biologically derived, and (ii) a gasoline base fuel. The formulation may contain one or more additional biofuel components or oxygenates: it may for example include ethanol, or ethanol together with one or more additional biofuels. The invention also provides a method for preparing the formulation, its use in a spark ignition engine, and the use of tricyclene in a gasoline fuel formulation for various purposes, including to enhance lubricity.
Abstract:
Gasoline compositions are provided comprising component A, an alkyl alkenoate compound, or a mixture of alkyl alkenoate compounds, selected from compounds of formula I: wherein R1 is a linear alkenyl group containing 3 to 5 carbon atoms, optionally substituted by a methyl group, and R2 is a linear or branched alkyl group containing 1 to 6 carbon atoms, with the proviso that component A has a boiling point or boiling point range within the temperature range of from 90 to 200° C., and at least one additional selected component.
Abstract:
The present invention concerns low energy requiring methods for processing low cellulosic biomass materials into oil, char and liquid components. One method comprises the steps of subjecting the biomass to hydrothermal carbonization under specified reaction conditions for producing a combined char and oil fraction as well as an aqueous fraction, separating the combined oil and char fraction from the aqueous fraction by filtration; separating the combined oil and char fraction into individual oil and char fractions using an organic solvent for forming an oil depleted char fraction and a liquid oil and solvent solution, and separating the liquid oil and solvent solution into individual oil and solvent fractions by distillation.
Abstract:
Techniques, systems, apparatus and material are disclosed for regeneration or recycling of carbon substances into renewable fuel and materials. In one aspect, a method of recycling carbon to produce a renewable fuel can include harvesting carbon donors, such as carbon dioxide (CO2), emitted from an agricultural process. Hydrogen donors, such as from biomass waste, can be dissociated under an anaerobic reaction to produce hydrogen. The harvested carbon dioxide can be reacted with the waste-produced hydrogen under pressure and temperature to generate a renewable fuel, such as methanol fuel.
Abstract:
Mixed alcohol formulas can be used as a fuel additive in petroleum-based hydrocarbon liquid fuels, synthetic or bio-derived gasoline, diesel fuels, jet fuel, aviation gasoline, heating oil, bunker oil, coal, petroleum coke, heavy crude oil, bitumen, or as a neat fuel in and of itself. The mixed alcohol formulations can be blended with ground petroleum coke, coal, heavy crude oil, or bitumen to form a thixotropic slurry for ease of transportation. The mixed alcohol formulations can also be used to shurry transport ground biomass. The mixed alcohol formulations can contain a blend of C1-C5 alcohols, or C1-C8 alcohols or higher C1-C10 alcohols in order to further boost energy content.