Abstract:
The invention relates to lubricating grease compositions having a base oil mixture based on oils having viscosities (ISO VG 2 to ISO VG 1500) that are standard for industrial lubricants, an ionic liquid, a thickening agent, e.g., based on a polyurea compound and conventional additives that can be used at current service temperatures that are higher than 120° C. to 260° C., in particular at a service temperature in the region of high service temperatures that are higher than 180° C. to 260° C. and also at low temperatures as low as −60° C. The invention also relates to a method for producing said type of lubricating grease compositions.
Abstract:
An anti-seize composition includes lubricating solids and at least one of a material selected from a grease and an oil. The lubricating solids include at least 15 weight percent of nano-sized lubricating solid particles. The nano-sized lubricating solid particles each have at least one dimension, on average, of less than 500 nm.
Abstract:
A composition for a lubricating fast-setting epoxy compound comprising substantially equal amounts of an epoxy base and an epoxy accelerator. The epoxy base comprises: a first micro-crystalline filler, a first talc, a hardenable epoxide containing liquid; and a titanium oxide. The epoxy base can also include a flatting agent. The epoxy accelerator comprises: a second micro-crystalline filler, a second talc, a methylamino accelerator, and a hydrocarbon resin. The epoxy accelerator can also include a modified aliphatic amine, an acrylic resin, a coloring agent, or combinations thereof.
Abstract:
Disclosed is an electroconductive grease comprising a fluorine oil, an electroconductive material, and a thickening agent, the electroconductive grease containing 5 to 20 wt. % of carbon black having a DBP oil absorption amount of 250 ml/100 g or less as the electroconductive material, and 2 to 15 wt. % of fluorine-containing resin particles having an average primary particle size of 1.0 μm or less as the thickening agent. The electroconductive grease comprises carbon black having specific properties, and fluorine-containing resin particles, preferably PTFE particles, having an average primary particle size of 1.0 μm or less, and therefore exhibits excellent oil separation characteristics, namely, a remarkably lower degree of oil separation, which can also be reduced to 10 wt. % or less.
Abstract:
A thermally conductive silicone grease composition comprising at least the following components: an organopolysiloxane (A) represented by the following general formula: [wherein R1 designates identical or different univalent hydrocarbon groups; X designates identical or different univalent hydrocarbon groups or alkoxysilyl-containing groups of the following general formula: —R2—SiR1a(OR3)(3-a) (wherein R1 designates the previously mentioned groups; R2 designates oxygen atoms or alkylene groups; R3 designates alkyl groups; and ‘a’ is an integer ranging from 0 to 2); and ‘m’ and ‘n’ are integers equal to or greater than 0, respectively]; a thermally conductive filler (B); and an organopolysiloxane (C) having silicon-bonded hydrogen atoms on both molecular terminals and in the molecular chains; is characterized by excellent resistance to heat and reduced oil bleeding.
Abstract:
A grease-like silicone composition comprising at least a liquid organopolysiloxane comprising siloxane units represented by the formula R2SiO2/2, siloxane units represented by the formula RSiO3/2, and siloxane units represented by the formula R3SiO1/2 and a thickening agent. A grease-like silicone composition is provided that is capable of containing a large amount of thickening agent and possesses superior heat resistance.
Abstract:
A lubricating oil composition is disclosed containing base oil, glycerol monooleate and one or more nitrile compounds. A method of lubricating an internal combustion engine is also disclosed.
Abstract:
High-temperature inhibitor materials for use with electrical connections in energy transmission and distribution systems where operating temperatures exceed 150° C. The high-temperature inhibitor materials comprise base oils and conductive particles, wherein the high-temperature inhibitor is stable at temperatures above 150° C.
Abstract:
The present invention relates to a method of lubricating the interface between a supporting ring and inner surface of a tire for use with a rim for a tire having two beads, comprising the step of providing a lubricant on a surface of said supporting ring, said lubricant comprising at least 60 percent by weight of polydimethylsiloxane, from about 7 to about 13 weight percent of amorphous silica, and from about 7 to about 13 weight percent of hydroxy-terminated dimethyl siloxane.
Abstract:
A lubricant for a run-flat tire system includes a water soluble, or water-miscible carrier, a thickener, and a surfactant. The thickener hereof retains its rheological properties and is not subject to permanent thinning shear. The base fluid is, preferably, a water-soluble polyhydroxyl or other polyhydric compound and the thickener is preferably a clay. When admixed with a surfactant and, optionally, a lubricity agent, the lubricant exhibits long term stability and (is resistant to heat buildup.) prevents the buildup of heat in the tire assembly when the tire is in the run flat condition.