Abstract:
A safety mechanism for preventing door slamming includes a board and a pivot extending from the board. A rotatable arm is attached at a first end to the pivot. Door arresting wedge (AW) is attached substantially perpendicularly to the second end of the arm. One or more magnets are disposed on the board for attracting the arm. One or more magnets disposed on an edge of the arm, and a matching stopper is used to limit the rotation of the arm.
Abstract:
Hardware that improves the safety of operating sectional doors that use torsional coil springs to facilitate door movement. A rotor assembly with centrifugally activated throw-out latches is affixed to the rotating shaft that bears the torsional coil springs. When a spring breaks, the shaft rotates rapidly as cables supporting the door unwind. Rapid rotation causes centrifugal force to bias the latches to an outer position in which they strike a trigger plate, allowing a pawl to move into a position in which the pawl blocks further rotation of the rotor, thus halting the descent of the sectional door. Raising the sectional door manually moves the latches, trigger plate, and pawl to their original position, disengaging the present invention and permitting the door to be lowered slowly without danger of injury.
Abstract:
The invention relates to a device for braking the rotation of a drive shaft of the leaf of a high-speed door. The inventive device consists of a flange (17) which is rotated by a shaft comprising several cavities (19), each of said cavities being equipped with a wall which supports a flyweight (18) in the operating condition and which is inclined in relation to the axis of rotation of the flange by an angle of less than 90°. Moreover, each cavity comprises a proximal end which is located close to the axis of rotation of the flange and a distal end which is located at a distance from said axis of rotation. According to the invention, each flyweight (18) moves in a cavity between a position whereby the shaft operates at normal speed, in which the flyweight is disposed in a zone comprising the proximal end of the cavity (19), and a position whereby the operating speed of the shaft (4) exceeds a pre-determined threshold, in which the flyweight (18) is disposed in a zone comprising the distal end of the cavity and actuates means for braking the rotation of the shaft.
Abstract:
When a drive shaft is in a non-drive state, a second drive rotor is in a non-engaged state with a driven rotor with respect to its own rotating direction. When the drive shaft is in a drive state, a rotating force of a first drive rotor is transmitted to the second drive rotor through an urging member. As a result, a power transmitting member revolves, and a centrifugal force arranges the power transmitting member at a second clamping position. The second drive rotor receives a reaction force from a driven rotor via the power transmitting member. As a result, the second drive rotor is relatively rotated in an opposite direction to a rotating direction of the first drive rotor with respect to the first drive rotor, against an urging force of the urging member. As a result, the first drive rotor is engaged with the driven rotor with respect to its own rotating direction. Accordingly, the clutch is stably operated.
Abstract:
Hardware that improves the safety of operating sectional doors that use torsional coil springs to facilitate door movement. A rotor assembly with centrifugally activated throw-out latches is affixed to the rotating shaft that bears the torsional coil springs. When a spring breaks, the shaft rotates rapidly as cables supporting the door unwind. Rapid rotation causes centrifugal force to bias the latches to an outer position in which they strike a trigger plate, allowing a pawl to move into a position in which the pawl blocks further rotation of the rotor, thus halting the descent of the sectional door. Raising the sectional door manually moves the latches, trigger plate, and pawl to their original position, disengaging the present invention and permitting the door to be lowered slowly without danger of injury.
Abstract:
The present invention is a door drop stop system designed to require a minimal amount of time and modification to install in an existing door system. It is effective with all overhead doors which employ a central axle; such overhead doors are in widespread use in residential, commercial, and vehicular applications. In addition, other configurations of the door drop stop system are effective with slab doors, bifold doors, and rollup doors. The present invention will reduce or eliminate property damage and personal injury resulting from a failure of a component of the door or its counterbalance system.
Abstract:
A controller for controlling a motor and other functions in a commercial door or barrier operator is described. The controller includes a unique motor start circuit for starting an AC motor which employs two dual-pole-dual-throw (DPDT) relays for activating the start coil in combination with a single triac for activating the main coil of the motor, eliminating dv/dt sensitivity. A motor start control for a door or barrier operator includes a speed governor integrated onto the controller for detecting when to shut off AC power to the start coil in a single phase motor. The integrated speed governor uses an RPM sensor for detecting the speed of the operator's limit shaft coupled to software run by the processor. Switches for operating open, close, stop and learn functions are located on the controller to facilitate installation, maintenance and programming by a service provider at the door operator. In addition, a cycle counter provides a warning when the number of barrier movements equals a predetermined, programmable number of movements.
Abstract:
A device for closing a sliding screen door is disclosed. The inventive device includes a housing mountable proximal to a sliding screen door. A retractable cable resiliently extends from the housing and couples with the sliding screen door to effect closing of the door subsequent to opening thereof.
Abstract:
A fluid free damper, comprising a spindle member; housing means mounted for relative eccentric rotation with respect to the spindle member; and engagement means interposed between the spindle member and the housing means for rotation along with one of the housing means and the spindle member with respect to the other one of the housing means and the spindle member so as to be deformably compressed between the spindle member and the housing means and thereby generate a resistive damping force between the housing means and the spindle member in response to the eccentric rotation of the one of the housing means and spindle member with respect to the other one of the housing means and the spindle member.
Abstract:
A power drive system for a sliding door, such as those employed on van type vehicles, enables a positive drive powered operation of the door by a control switch remote from the door and a programmed electronic control unit while accommodating manual operation of the door without mechanical interference or resistance from the drive or altering of the drive control program. A push/pull cable connected to the door is in positive meshed engagement at all times with a rotary drive gear whose rotative displacement from a rest position is continuously transmitted to the electronic control unit as a door position input signal. During powered operation of the door, the control unit is programmed to actuate or control a reversible drive motor or associated devices when the door is at selected positions along its path of movement. The drive motor is mechanically coupled to the drive gear via a normally disengaged clutch which is automatically engaged to establish a positive mechanical drive connection between the motor and drive gear only while the motor is in operation.