Abstract:
A portable pumping system provides insulin or other drugs to a user. A shape memory element is used to actuate the pump and an intelligent system controls the actuator in order to minimize stresses within the system and provide accurate and reliable dosage delivery. The control system utilizes various types of feedback to monitor and optimize the position of the pumping mechanisms. Physical design aspects also minimize stress and the combination of the physical design aspects and the intelligent operation of the system results in a lightweight and cost effective pump that may be used in a disposable fashion if desired.
Abstract:
A control system for controlling electromagnetic pumps, such as electromagnetic driven membrane pumps, has at least one microprocessor and at least one sensor, the microprocessor controlling the power supply to at least one electromagnet whose changes in emitted magnetic field causes at least one moving part, directly or indirectly, to perform an oscillating pumping movement. The control system has at least one positioning sensor which senses the moving part's position in the electromagnetic driven pump. By use of the positioning sensor's measurements, the pump can be controlled with great accuracy. A method for controlling electromagnetic pumps is also provided.
Abstract:
An active valve system may be used to improve operation of the suction valve(s) of a positive displacement pump. As appropriate, the active valve system may apply a force to the suction valve directed to open and/or close the suction valve. By quickening the opening and/or closing of the suction valve, the pump may run at a higher speed and operate with less wear. Additionally, the active valve system may allow all suction valves of a pump to be held open for various purposes.
Abstract:
A pump controller and pump controlling method for dispensing a precise amount of low viscosity fluid are provided in which the problems of double dispenses and stuttered dispenses are avoided. In particular, the timing of the valves and motors in the pumping apparatus are adjusted to avoid these problems.
Abstract:
A pump primarily for liquid paint comprising first and second pistons (19, 21) reciprocable rectilinearly in respective first and second cylinders (17, 18), said first and second pistons being moved relative to their respective pistons by operation of an A. C. electric motor (13) the rotary output shaft of which is coupled to said first and second pistons by means including a constant velocity cam (31) and cam follower (32, 33) mechanism converting rotary motion of the output shaft into reciprocatory motion of said first and second pistons 180° out of phase with one another.
Abstract:
A reciprocating pump system is utilized. The system facilitates the prediction of failure modes due to degradation of pump components. A sensor system is used to monitor parameters indicative of abnormal events or wear occurring in specific components, such as pump valves. The indications of wear can be used to predict valve failure or other component failure within the reciprocating pump.
Abstract:
A metering pump with a rotary drive motor and an oscillating piston, wherein the rotary motion of a drive motor is transformed into an oscillatory motion of a connecting rod by means of a gear arrangement, so that a displacement means activated thereby executes an oscillating linear motion on continuous rotation of the drive motor, that results in transfer of a medium to be metered in a metering head (12) arranged in the longitudinal axis of the connecting rod (19) cooperating alternately with an outlet and inlet valve to produce a pump stroke (pressure stroke) and a priming stroke. A reference element (35) is associated with the connecting rod, the position of which is detected by a positional sensor, wherein the positional sensor provides an actual signal (xI) that is in a fixed relationship to the position of the reference element and thus to that of the displacement means and that provides information regarding the motion executed by the displacement means, so that the electronic control system of the metering pump can react to the conditions of the metering circuit and pump.
Abstract:
The invention relates to a device and a method for controlling a two-cylinder thick matter pump comprising delivery pistons that are actuated in a push-pull manner by means of a hydraulic reversible pump (6) and hydraulic drive cylinders controlled by said pump. For each pressure stroke, the delivery cylinders (50, 50′) are connected to a delivery conduit (58) by means of a pipe junction (56). At the end of a pressure stroke, a reversal process of the reversible pump (6) and the pipe junction (56) is triggered. The aim of the invention is to obtain a targeted reversal of the reversal pump and the pipe junction, even when the deliverable quantity is varied, whereby the delivery cylinders are completely emptied, but also without pistons banging the ends of the cylinders. To this end, a computer-assisted reversal device is provided, said device comprising a measuring and evaluating routine for detecting the temporal displacement course of the piston along the path thereof between the two cylinder ends, by measurement and/or calculation, and for calculating a triggering time derived therefrom for the subsequent reversal of the reversible pump and the pipe switch.
Abstract:
A high pressure slurry pump is described which automatically provides a clean fluid buffer around the intake and exhaust valves of the pump and in front of the pump piston in order to displace erosive slurry material and thus extend the life of the pump and improve pump efficiency.