Abstract:
A compressor having a housing formed by a plurality of housing members that are connected together is disclosed. The compressor is configured in such a manner that refrigerant is compressed in the housing and discharged to the exterior. Each of the housing members contains 9 to 17 percent by mass of Si, 3.5 to 6 percent by mass of Cu, 0.2 to 1.2 percent by mass of Mg, 0.2 to 1.5 percent by mass of Fe, 0 to 1 percent by mass of Mn, 0.5 percent by mass or less of Ni, and a remaining portion containing Al and unavoidable impurities. It is preferred that the average hardness of each housing member is adjusted to HV130 to HV170 through solution heating in which the housing member is maintained at the treatment temperature of 450° C. to 510° C. for 0.5 hours or longer, followed by water quenching, and then by aging treatment in which the housing member is maintained at the treatment temperature of 170° C. to 230° C. for one to twenty-four hours after the c housing member is cast.
Abstract:
An throttle valve is controlled by using an electric actuator. A cover for covering one end side of the throttle valve shaft is attached to a side wall of a throttle body. A throttle position sensor unit and an electronic control module for controlling the throttle valve is attached to an inner face of the cover. The throttle position sensor and the electronic control module are contiguous to each other and connected at a position contiguous thereto. The cover is provided with a connector portion for external connection of the electronic control module. A group of lead frames constituting terminals of the connector portion are embedded in the cover. Power source is supplied to a motor via the connector portion for external connection, the electronic control module and intermediary connectors provided at the cover. Thereby, by simplifying the cover for protecting the throttle valve. The motor as a drive source and a power transmission apparatus, electric connection lines and connecting portions are integrally assembled. Thereby a motor driving type throttle apparatus can be integrated to an engine by inexpensive fabrication cost, in a compact and simple style and with high reliability.
Abstract:
A cast piston, for an internal combustion engine or pump has an integral coolant ring gallery, with localized extensions, to achieve a coolant interchange with the gallery upon piston reciprocation. At least a portion of an extension lies generally parallel to the longitudinal piston axis and towards an upper end of the piston adjacent the working fluid. This provides an attendant increase in surface area exposed to coolant allowing either a decrease in operational piston temperature or an increase in allowable heat flow into the piston from a working fluid.
Abstract:
A membrane actuator includes a magnetically actuatable membrane and a magnetic trigger. The membrane includes a shape memory alloy (SMA), and the magnetic trigger is configured to induce a martensitic transformation in the SMA, to produce a larger force than would be achievable with non-SMA-based materials. Such a membrane actuator can be beneficially incorporated into a wide variety of devices, including fluid pumps, shock absorbing systems, and synthetic jet producing devices for use in an aircraft. The membrane/diaphragm can be formed from a ferromagnetic SMA, or a ferromagnetic material can be coupled with an SMA such that the SMA and the ferromagnetic material move together. A hybrid magnetic trigger, including a permanent magnet and an electromagnet, is preferably used for the magnetic trigger, as hybrid magnetic triggers are easy to control, and produce larger magnetic gradients than permanent magnets or electromagnets alone.
Abstract:
This invention concerns a two-stroke cycle engine, more specially it concerns a two-stroke cycle engine using a preceding air-layer for scavenging. It has a scavenger passage connected to a branching scavenger passage opened to said scavenging port. The engine has a connecting passage to link the air passage and the fuel passages so that negative pressure in the air passage forces the fuel-air mixture in the fuel passage into said air passage. Further, the engine according to this invention has a removable guide with a surface forming a curved smooth channel which is attachable to the scavenger passage in the crankcase from the mounting surface, and forms a portion of said scavenger passage with the curved channel. The blow-up angle of the scavenger passage varies along the circumferential direction of the cylinder. The crankcase is configured in such a way that the front and rear portions, which are separated by a block, and a scavenger passage is provided inside both said front and rear portions of said crankcase, and the cylinder. The air cleaner has two air passages running from it in parallel, the first one is connected to said air passage, and the second one is connected to the air inlet of the carburetor to provide air for the fuel passage, and a choke valve on the air cleaner is provided to open and close both of the first and second air passages.
Abstract:
A personal watercraft is disclosed with a hull, a seating assembly, and a four stroke internal combustion engine below the seating assembly. The engine has at least one intake valve for each of the combustion cylinder chambers, at least one exhaust valve for each of the combustion cylinder chambers, and a valve actuation assembly located in a cylinder head for operating the intake and exhaust valves. At least one air intake passageway is operatively coupled to the combustion cylinder chambers through the intake valves. An air intake manifold is connected to the cylinder bead and operatively connected to the at least one air intake passageway. The engine also has a supercharger for boosting air to the air intake manifold. The watercraft also includes a propulsion unit, operatively coupled to the crankshaft, which is located on one end of the two ends of the crankcase.
Abstract:
A throttle control apparatus for an engine on a vehicle is provided, in which the number of component parts in the position detection means and the driven means is reduced to improve the accuracy in its position control and at the same time an integrated wiring is achieved and connectors are aggregated. The position detection means for detecting the position of a control valve, the driven means for controlling the position of the control valve, the means for processing control signals, an output from the position control means for controlling the position of the control valve are disposed within a sealed space defined by a body supporting a control valve shaft, and a cover. Based on the fact that the number of component parts of the position detection means may be reduced, the mechanical hysteresis and electrical hysteresis may also be reduced to improve the accuracy in controlling the control valve position, and it is possible to aggregate the connectors.
Abstract:
A one piece slide in place “butterfly” valve plate for a short runner manifold of a vehicle. A method of reducing friction in an anti-chatter device.
Abstract:
A compressor used in a refrigerating cycle is provided as a miniaturized and lightweight unit at low production cost by selecting an optimal material to constitute components or by forming the housing in a specific shape so as to allow the components to have smaller wall thicknesses while assuring sufficient strength. A tough material achieving a tensile strength greater than 800 N/mm2 is used when forming at least one of the components constituting the housing and the internal mechanisms. In addition, over the area of the housing where the bottom surface and the inner circumferential surface connect with each other, the bottom surface forms an R-shaped portion and the inner circumferential surface forms a sloping portion or an R-shaped portion.
Abstract translation:在制冷循环中使用的压缩机通过选择构成部件的最佳材料或通过将壳体形成为特定形状而以低生产成本提供为小型轻型单元,以允许部件具有更小的壁厚,同时确保足够的 强度。 当形成构成外壳的部件和内部机构中的至少一个时,使用达到大于800N / mm 2的拉伸强度的韧性材料。 此外,在底面和内周面彼此连接的壳体的区域中,底面形成R形部分,并且内周面形成倾斜部分或R形部分。
Abstract:
A method of high pressure die casting in iron alloy reinforcements for main bearing scantlings in an aluminum alloy engine block for an internal combustion engine. Prior to casting, reinforcements (1) having bores (6) for main bearing screws are placed in a die cavity (21), so that cores for main bearing screws protrude into the bores in each reinforcement on one side of the reinforcement. Then the reinforcements are fixed in the die cavity by placing a cylinder liner core (25) against a surface (27) of the reinforcement on the opposite side of the reinforcement.