Abstract:
A pressurized gas supply system includes a pressurized container which expands and contracts. The container includes a one-piece liner molded from a polymer which is reinforced by a high tensile fiber such as KEVLAR®. A valve is molded into the liner, and a regulator is connected to the valve. A hose, having a conserver positioned therealong, extends between the regulator and a fitting allowing a user to inhale gas from the container. The container is carried in a carrying bag, which can be in the form of a carrying case, a purse, or a back-pack.
Abstract:
A gas container having a deformable outer container body, an inner bag, which has a gas barrier characteristic, and an outlet/inlet formed within the inner bag. A gas is charged into the inner bag through the outlet/inlet and discharged there by applying a pressure to the outer container body from outside. According to the invention, all of the gas held in the container can be used without leaving any remaining gas waste. In addition, the container can be re-used.
Abstract:
A compact portable transport unit for shipping hyperpolarized noble gases and shielding same from electromagnetic interference and/or external magnetic fields includes a means for shifting the resonance frequency of the hyperpolarized gas outside the bandwidth of typical frequencies associated with prevalent time-dependent fields produced by electrical sources. Preferably the transport unit includes a magnetic holding field which is generated from a solenoid in the transport unit. The solenoid includes a plurality of coil segments and is sized and configured to receive the gas chamber of a container. The gas container is configured with a valve, a spherical body, and an extending capillary stem between the valve and the body. The gas container or hyperpolarized product container can also be formed as a resilient bag. The distribution method includes positioning a multi-bolus container within the transport unit to shield it and transporting same to a second site remote from the first site and subsequently dispensing into smaller patient sized formulations which can be transported (shielded) in another transport unit to yet another site.
Abstract:
A pressure vessel is disclosed comprising a first cylindrical wall for bearing circumferential loads, a second cylindrical wall for bearing axial loads, the walls being concentrically arranged, and two end caps arranged at opposite ends of the walls, which end caps are rigidly connected to the second cylindrical wall. At least one of the end caps is axially slidable relative to the first cylindrical wall. Sealing means are arranged between the first cylindrical wall and each slidable end cap.
Abstract:
Containment systems are provided. In one example embodiment, a containment system is provided, the containment system comprising: a container; and a skeletal reinforcement comprised of flexible fibers.
Abstract:
An underwater carbon dioxide storage facility including a carbon dioxide deposit stored underwater as a clathrate includes a flexible barrier disposed at least partially over the carbon dioxide deposit. The carbon dioxide deposit may be stored in or at the bottom of a body of water.
Abstract:
An underwater carbon dioxide storage facility including a carbon dioxide deposit stored underwater as a clathrate includes a flexible barrier disposed at least partially over the carbon dioxide deposit. The carbon dioxide deposit may be stored in or at the bottom of a body of water.
Abstract:
An underwater carbon dioxide storage facility including a carbon dioxide deposit stored underwater as a clathrate includes a flexible barrier disposed at least partially over the carbon dioxide deposit. The carbon dioxide deposit may be stored in or at the bottom of a body of water.
Abstract:
The invention relates to a pressure vessel (10) for gases, in particular helium, which is characterized in that the pressure vessel has an outer casing having pressure resistance up to an internal gas pressure of at least 10 bar, in that the outer casing of the pressure vessel has at least one highly diffusion-resistant barrier layer having a leak rate for helium at an internal gas pressure of 10 bar and room temperature of preferably less than 10−2 mbar·l/s, and in that the vessel has an accommodating volume for gas at atmospheric pressure of at least 25 liters. The outer casing of the pressure vessel can comprise at least one barrier layer made of a flexible polymer film having a high barrier function or ultra barrier function or at least one highly gas-tight flexible barrier layer made of EVOH. The vessel can be bag-like or, in particular at higher pressures, inherently rigid. High-strength plastics made of fiber granular materials, for example, can be used to produce the layer, which guarantees the high pressure resistance. Seams (12) can be provided, for example in the lateral edge areas, in order to reinforce and stabilize the pressure vessel. The pressure vessel (10) according to the invention can have a ball valve (11) as a closing element in order to remove the gas.