Abstract:
In a MEMS wafer, film stresses are measured by placing an inductor array over or under the wafer and measuring inductance variations across the array to obtain a map defining the amount of bowing of the wafer.
Abstract:
The pressure detection device includes a buffer member deformable by a pressure change, including one or more magnets, and a sensor assembly including one or more magnetic sensors to detect a variation of a magnetic field accompanied by deformation of the buffer member.
Abstract:
A connection element and a method for positioning a magnetic field sensor suite into the zero line of a magnetic field is provided, the measuring of the force being achieved by a displacement between a magnet and the magnetic field sensor suite. The magnetic field sensor suite is supported on a holder in such a way that the magnetic field sensor suite is achieved into the zero line of the magnetic field of the magnet.
Abstract:
The present invention relates to a force measuring instrument, having a carrier plate (3), at least one magnet (5), and at least one magnetically sensitive element (6). A tongue element (4) protrudes at least partly from the carrier plate (3) and is joined to a plate element (2). Between the tongue element (4) and the carrier plate (3), an air gap (7) is formed, in which the magnetically sensitive element (6) is positioned. The force to be measured, delivered via the plate element (2), leads to a relative motion between the end, toward the air gap, of the tongue element (4) and the carrier plate (3). This causes a change in the magnetic field geometry in the air gap (7). The present invention also relates to a method for detecting a force.
Abstract:
A pressure sensor comprising a plurality of sensor parts arranged in matrix. A first electrode being connected with first wiring and a second electrode being connected with second wiring are disposed oppositely through a cavity part in the sensor part. The second electrode bends to the first electrode side in response to a pressure from a specimen and touches the first electrode upon application of a pressure of a specified level or above. When the specimen is pressed against a pressure detecting region, both electrodes touch each other at a sensor part corresponding to a protrusion of the specimen and are separated at a sensor part corresponding to a recess. When a scanning signal is fed from a scanning circuit to one wiring and presence of a signal flowing through the second wiring is detected by a sensing circuit, a pressure being applied to each sensor part can be detected. Furthermore, the shape is detected by feeding the scanning signal from the scanning circuit to each first wiring sequentially and scanning the pressure detecting region generally.
Abstract:
The system (10) comprises a sensor (18) 90×90×90×30 mm as an electromagnetic microwave cavity (20) with a coupler (22) with a wire (40) and an antenna (42). Cavity (20) produces a response signal (26) in response to an interrogation signal (24) from interrogator (16). Sensor (18) is coupled to a structure (14) to allow a strain to alter the resonance properties. 3.6 GHz is used with a detection of a 2.5 kHz change. If not temperature via strain is detected a mechanical amplifier is used with cavity (20) for temperature compensation. Continuous or intermittent narrowband signals are used as interrogation signals (24). Used with bridges for structural health monitoring. Also for aircrafts, dams, buildings, vehicles.
Abstract:
A joining element is proposed which, for force measurement, senses a relative motion between a magnet system and a magnet sensor apparatus. The magnet system is disposed with respect to the magnet sensor apparatus in such a way that a component of the magnetic field perpendicular to the relative motion is linearized.
Abstract:
A magnetic field response sensor comprises an inductor placed at a fixed separation distance from a conductive surface to address the low RF transmissivity of conductive surfaces. The minimum distance for separation is determined by the sensor response. The inductor should be separated from the conductive surface so that the response amplitude exceeds noise level by a recommended 10 dB. An embodiment for closed cavity measurements comprises a capacitor internal to said cavity and an inductor mounted external to the cavity and at a fixed distance from the cavity's wall. An additional embodiment includes a closed cavity configuration wherein multiple sensors and corresponding antenna are positioned inside the cavity, with the antenna and inductors maintained at a fixed distance from the cavity's wall.
Abstract:
A force sensor, in particular for detecting the forces on a vehicle seat, includes a force measurement cell (1) that has a Hall element. The force measurement cell (1) includes at least one bending bar (2, 3), which from the exertion of force to be detected exeris an influence on the magnetic field in the region of a magnetic-field-sensitive sensor element (6) of the measurement cell (1). The sensing is done with a Hall element (6), held on the at least one bending bar (2, 3), which element, under the force exerted on the bending bar (2, 3), can be deflected in the field of a relatively stationary permanent magnet (4), and a magnetic diagnosis field in the region of the Hall element (6) can be generated whose field lines are located in the plane of the sensor element without influencing the measurement field.
Abstract:
In a circuit arrangement having a linear variable differential transformer as a displacement sensor or force sensor, having a selection circuit which is connected to the primary coil of the transformer and which provides an output current for triggering the primary coil, and having an analysis circuit which is connected to the secondary coils of the transformer and which provides a message signal, a control circuit used for triggering the selection circuit and the analysis circuit and for processing the measurement signal provided by the analysis circuit is connected to the primary coil in order to calculate the temperature of the circuit arrangement, and is configured such that it determines the temperature-dependent ohmic resistance of the primary coil and calculates from it the temperature and corrects accordingly the measurement signal provided by the analysis circuit.