Abstract:
This disclosure is directed to fiber-optic modulators that can be integrated in optical fibers to encode data in optical signals. In one aspect, a fiber-optic modulator includes a weak planar, sub-wavelength grating disposed between an end of a first optical fiber and an end of a second optical fiber. A first electrode is disposed on an edge of the grating and connected to an electronic signal source, and a second electrode is disposed on the edge of the grating opposite the first electrode and connected to the electronic signal source. The grating includes a grating pattern to reflect a channel input to the first optical fiber when a low or no current portion of an electronic signal to be generated by the electronic signal source is applied to the grating and to transmit the channel when a high current portion of the electronic signal is applied to the grating.
Abstract:
A process to manufacture a semiconductor optical modulator is disclosed, in which the process easily forms a metal film including AuZn for the p-ohmic metal even a contact hole has an enhanced aspect ration. The process forms a mesa including semiconductor layers first, then, buries the mesa by a resin layer sandwiched by insulating films. The resin layer provides an opening reaching the top of the mesa, into which the p-ohmic metal is formed. Another metal film including Ti is formed on the upper insulating film along the opening.
Abstract:
In a flat panel display apparatus and a method of manufacturing the same, the flat panel display apparatus includes a substrate, a display unit disposed on the substrate, a sealing substrate disposed facing the display unit, a sealing member disposed between the substrate and the sealing substrate so as to surround the display unit, a wiring unit disposed between the substrate and the sealing substrate so as to partially overlap the sealing member, and at least three inlet portion groups to which voltage is applied via an external power source. The inlet portion groups are connected to the wiring unit. Each inlet portion group includes a plurality of sub-inlet portions.
Abstract:
A flat panel display apparatus includes a substrate, a display unit on the substrate, a sealing substrate facing the display unit, a sealing member between the substrate and the sealing substrate surrounding the display unit, a wiring unit between the substrate and the sealing substrate with an area overlapped with the sealing member, the wiring unit comprising a plurality of separate wiring members, and a leading unit comprising a main body unit, a connection unit, and an intermediate unit that are integrally formed and where the leading unit is configured to receive a voltage applied to the wiring unit from an external power source. The connection unit is connected to the wiring unit, the main body unit is connected to the external power source, the intermediate unit is arranged between the connection unit and the main body unit, and a width of the connection unit decreases away from the main body unit.
Abstract:
There is provided a method of producing a waveguide element comprising steps of forming a lower cladding layer having a refractive index n1 on a substrate having a lower electrode; forming an active core layer having a refractive index n2 and exhibiting an electro-optical effect on a surface of the lower cladding layer; forming a protective layer having a reflective index n4 on a surface of the active core layer; forming a passive core layer having a reflective index n3 on a surface of the protective layer; exposing the passive core layer with a predetermined pattern to form an optical circuit; forming an upper cladding layer on a surface of the passive core layer; forming an upper electrode on a surface of the upper cladding layer; and performing a polarization orientation treatment in which the active core layer is softened or liquidized and cured while the electric field is applied.
Abstract:
The present invention is directed to a display device which comprises two layers of insulating substrate, at least the substrate on the viewing side is transparent, an array of display cells sandwiched between the two layers of substrate, a writing means, and optionally an erasing means to magnetically or electrically erase the image. The display cells are filled with a dispersion of magnetic particles which may be charged or non-charged. The display of the invention eliminates the use of the transparent conductor film, such as ITO, on the viewing side. Therefore, the displays of this invention are more cost effective, more flexible and durable and capable of higher image contrast ratio and higher reflectance in the Dmin area.
Abstract:
In an electro-optic device, a stack structure including a first silicon layer of a first conductivity type and a second silicon layer of a second conductivity type has a rib waveguide shape so as to form an optical confinement area, and a slab portion of a rib waveguide includes an area to which a metal electrode is connected. The slab portion in the area to which the metal electrode is connected is thicker than a surrounding slab portion. The area to which the metal electrode is connected is set so that a range of a distance from the rib waveguide to the area to which the metal electrode is connected is such that when the distance is changed, an effective refractive index of the rib waveguide in a zeroth-order mode does not change.
Abstract:
A display substrate includes a plurality of pixels. Each of the pixels includes a switching element, a storage capacitor, a storage line and a pixel electrode. The switching element includes a polycrystalline silicon layer having a channel portion and a doped portion, a gate electrode, a source electrode and a drain electrode. The gate electrode is formed on the channel portion and has a lower layer and an upper layer. The source electrode and the drain electrode make contact with the doped portion. The storage capacitor includes a first storage electrode formed from a layer substantially same as the polycrystalline silicon layer and a second storage electrode formed from a layer substantially same as the lower layer of the gate electrode.
Abstract:
With regard to a substrate for a transparent electrode and transparent conductive thin film each having transparency and conductivity, a transparent metal material and transparent electrode are provided which are capable of being stably supplied and are composed of raw materials with superior chemical resistance. When a metal oxide layer (12) composed of an anatase type crystal structure is provided on a substrate (11) to constitute the metal oxide layer (12) by M:TiO2, low resistivity is achieved while internal transmittance is maintained. M:TiO2 obtained by substituting other atoms (Nb, Ta, Mo, As, Sb, or W) for Ti of the anatase type TiO2 enable maintenance of transparency and remarkably improvement of electric conductivity.
Abstract:
An apparatus 100 that comprises a planar electro-optic modulator 110 being located on a substrate 105 and including a waveguide 115 and electrical contacts 120. The waveguide that includes first and second substantially straight segments 122, and a curved segment 126 that serially end-connects the first and second substantially straight segments such that light travels in a substantially anti-parallel manner in the first and second substantially straight segments. The electrical contacts being located adjacent the first and second substantially straight segments and being connected to produce constructively adding phase modulations on an optical carrier passing through the segments.