Abstract:
Embodiments of the invention provide an array substrate and a display device. The array substrate comprises a common electrode and a pixel electrode that are formed on a base substrate. The common electrode comprises a first common electrode and a second common electrode, the first common electrode is provided below the pixel electrode and separated from the pixel electrode by an insulating layer, the second common electrode is provided in the same layer as the pixel electrode. The pixel electrode comprises a plurality of strip electrodes, the second common electrode also comprises a plurality of strip electrodes, and the strip electrodes of the pixel electrode and the strip electrodes of the second common electrode are alternately arranged.
Abstract:
The present invention provides a liquid-crystal display device in which a pixel defect does not occur even when an electrode becomes disconnected. The liquid-crystal display device according to the present invention comprises a liquid crystal layer and a pair of substrates between which the liquid crystal layer is interposed. At least one of the pair of substrates includes an electrode that applies a voltage to the liquid crystal layer. The electrode that applies the voltage to the liquid crystal layer includes two or more linear portions. The substrate comprising the electrode that applies the voltage to the liquid crystal layer, from among the pair of substrates, includes a floating electrode that overlaps at least two of the two or more linear portions via an insulating film.
Abstract:
A stereo display apparatus includes a display panel and an adjustable barrier. The display panel is capable of providing an image. The adjustable barrier is located on a transmission path of the image. The adjustable barrier includes a first substrate, a second substrate disposed opposite to the first substrate, and a display medium located between the first substrate and the second substrate. The second substrate includes a second plate, a plurality of first electrodes, and a plurality of second electrodes. The first and second electrodes are located on the second plate. The first electrodes are arranged in a same space. The second electrodes and the first electrodes are alternately arranged. The second electrodes are arranged in a same space. A first space is between any two adjacent first electrodes. A second space is between any two adjacent second electrodes. The first space is greater than the second space.
Abstract:
A liquid crystal display includes: a first substrate and a second substrate disposed opposite the first substrate; a liquid crystal layer interposed between the first and second substrates and including liquid crystal molecules; a gate line which transmits a gate signal; first and second data lines which respectively transmit first and second data voltages, the first and second data voltages having opposite polarities; a first switching element connected to the gate line and the first data line; a second switching element connected to the gate line and the second data line; a first subpixel electrode connected to the first switching element; and a second subpixel electrode connected to the second switching element. The first and second subpixel electrodes overlap portions of the first and second data lines. The first and second subpixel electrodes include first and second branches, respectively, which are alternately arranged between the first and second data lines.
Abstract:
Provided is a switching liquid crystal panel and a display device that have novel structures that are capable of preventing luminous regions from appearing in the light transmitting parts, in the vicinities of boundaries thereof with the light shielding parts. The switching liquid crystal panel includes a pair of substrates (26a, 26b) having a twisted nematic type liquid crystal layer (24) interposed therebetween, and a plurality of light shield forming electrodes (30) that are formed on at least one of the pair of the substrates (26a, 26b) and that form light shielding parts (40) of a parallax barrier (16) in cooperation with a counter electrode (34) when a voltage is applied, the counter electrode (34) being is opposed to the light shield forming electrodes (30) with the liquid crystal layer (24) interposed therebetween. A rubbing direction for an alignment film (36a) provided on the substrate (26a) side on which the light shield forming electrodes (30) are formed is at an angle of 45° or less to a lengthwise direction of the light shield forming electrodes (30).
Abstract:
In a liquid crystal display device where pixel electrodes and counter electrodes are arranged on one substrate in a stacked manner by way of an insulation layer, it is possible to lower a drive voltage while maintaining optical transmissivity. Pixels each of which includes a first pixel electrode, a second pixel electrode and a counter electrode are arranged on a substrate in a matrix array. A first pixel electrode and a second pixel electrode in one pixel include a plurality of comb-teeth portions respectively. The first pixel electrode and the second pixel electrode are alternately arranged on the same layer in an opposed manner with a gap defined between the comb-teeth portion of the first pixel electrode and the comb-teeth portion of the second pixel electrode. The first and second pixel electrodes and the counter electrode are arranged in a stacked manner with an insulation layer sandwiched therebetween.
Abstract:
It is an object of the present invention to apply a sufficient electrical field to a liquid crystal material in a horizontal electrical field liquid crystal display device typified by an FFS type. In a horizontal electrical field liquid crystal display, an electrical field is applied to a liquid crystal material right above a common electrode and a pixel electrode using plural pairs of electrodes rather than one pair of electrodes. One pair of electrodes includes a comb-shaped common electrode and a comb-shaped pixel electrode. Another pair of electrodes includes a common electrode provided in a pixel portion and the comb-shaped pixel electrode.
Abstract:
A horizontal electric field switching liquid crystal display device includes a gate line, a common line parallel to the gate line and provided at an area adjacent to the gate line, a data line crossing the gate line with a gate insulating film therebetween to define a pixel area, a thin film transistor provided adjacent to a crossing of the gate line and the data line, a common electrode provided in the pixel area and connected to the common line, a pixel electrode connected to the thin film transistor and provided in such a manner to form a horizontal electric field along with the common electrode in the pixel area on the same plane as the common electrode, a storage capacitor electrode overlapping the common electrode to provide a storage capacitor, and a contact electrode contacting the pixel electrode, the thin film transistor and the storage electrode at their side surfaces.
Abstract:
A liquid crystal panel (10) includes a liquid crystal layer formed with a p-type liquid crystal. The liquid crystal layer exhibits homogeneous orientation while no voltage is applied. Further, an electric field is applied to the liquid crystal layer in a direction same as dipole moments (μ) of liquid crystal molecules (3a) to which no voltage is applied. With these arrangements, it is possible to provide a liquid crystal panel and a liquid crystal display device, each of which adopts a new display mode that can achieve a wide viewing angle equivalent to an IPS mode, can achieve a high-speed response like an OCB mode or exceeding the OCB mode, and does not require an initial operation for orientation conversion to the bend orientation.
Abstract:
The present invention provides a liquid crystal display device providing uniform display without lowering the transmissivity.The present invention is a liquid crystal display device comprising: a first substrate and a second substrate positioned to face the first substrate; and a liquid crystal layer interposed between the first substrate and the second substrate, wherein the liquid crystal layer contains liquid crystal molecules having positive dielectric anisotropy, the liquid crystal molecule is aligned in a direction vertical to a surface of the first substrate when voltage is not applied, the first substrate comprises a pixel electrode and a common electrode, each comprising a core portion and a comb-tooth portion, the comb-tooth portions of the pixel electrode and of the common electrode are arranged in parallel with each other and alternately engaged at a constant interval, the core portion of the common electrode comprises two parallel portions that are in parallel with the longitudinal direction of the comb-tooth portion of the common electrode, the two parallel portions are each positioned outside the outermost comb-tooth portions of the pixel electrode, and (W−S)/(L+S) satisfies “2n+1”, in which “W” represents a distance between the two parallel portions, “L” represents the width of each of the comb-tooth portions of the pixel electrode and the common electrode, “S” represents a distance between a comb-tooth portion of the pixel electrode and an adjacent comb-tooth portion of the common electrode and also represents a distance between one of the outermost comb-tooth portions of the pixel electrode and one of the two parallel portions, and “n” represents the number of the comb-tooth portions of the common electrode.