Abstract:
A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.
Abstract:
A guidance system for a medical facility includes at least one floor element that extends along a path of the medical facility and is arranged in a floor area of the path. The at least one floor element is configured for magnetic interaction such that through the magnetic interaction of the floor element with a magnetic guide element arranged on a mobile transport device, a magnetic attraction is generated. The mobile transport device is guided along the at least one floor element by the generated magnetic attraction during forward motion of the mobile transport device along the path through the medical facility.
Abstract:
Systems, methods and devices for the automated delivery of goods form one to another using a robotic tug and accompanying cart. A computer within the tug or cart stores an electronic map of the building floor plan and intended paths for the tug to take when traversing from one location to the next. During the delivery, a variety of different sensors and scanners gather data that is used to avoid obstacles and/or adjust the movement of the tug in order to more closely follow the intended path. The system preferably includes both wired and wireless networks that allow one or more tugs to communicate with a tug base station, a primary network located at the site of the delivery and a remote host center that monitors the status and data collected by the tugs.
Abstract:
A patient support system includes a base having a plurality of wheels, and a patient support coupled to the base, wherein at least a part of the patient support is for supporting a head of a patient, and at least one of the wheels has a plurality of secondary wheels. A patient support system includes a patient support, a transportation mechanism for transporting the patient support, a positioner for moving the patient support relative to the transportation mechanism, and a positioning system for determining an actual position associated with the patient support with respect to a multi-dimensional coordinate system, wherein one of the transportation mechanism and the positioner is for coarse positioning of the patient support, and another one of the transportation mechanism and the positioner is for fine positioning of the patient support.
Abstract:
The wheelchair of the present invention comprises propulsion means for at least two drive wheels 1, a wheelchair user movement indicator means 2 that comprises means to indicate a forward, a backward and a rotation movement, at least one sensor system to detect at least one value referring to a surrounding free space, and a controller that comprises means to obtain a linear and a rotation movement component value, αjs, βjs, from the data produced by the movement indicator means, and means to obtain the surrounding free space in a linear and in a rotation component, αs, βs, from the at least one value detected by the, at least one, sensor 3, 4, 5. The total linear and rotational movement, αT, βT, applied to the propulsion means are calculated as a combination of the linear and rotation movement component value, αjs, βjs, obtained from the movement indicator means and the, at least one, value of the surrounding free space in a linear and rotation component, αs, βs.
Abstract:
Systems, methods and devices for the automated retrieval/delivery of goods from one location to another using a robotic device such as a tug and accompanying cart. A computer within the tug/cart stores a map of the building floor plan and intended paths for the tug to take when traversing from one location to the next. During the delivery, a variety of different sensors and scanners gather data that is used to avoid obstacles and/or continuously adjust the movement of the tug in order to more closely follow the intended path. The system preferably includes wireless networks that allow one or more tugs to communicate with a tug base station, a primary network located at the site of the delivery and a remote host center that monitors the status and data collected by the tugs.
Abstract:
In a robot system constructed by a superior controller and a robot, it is necessary to carry out a high-speed computation in a system which simultaneously generate a map together with identifying a posture of the robot, there is a problem that the robot system becomes expensive because a computing load becomes enlarged, and it is an object to reduce the computing load. In order to achieve the object, there is provided a robot system constructed by a controller having a map data and a mobile robot, in which the robot is provided with a distance sensor measuring a plurality of distances with respect to a peripheral object, and an identifying apparatus identifying a position and an angle of the robot by collating with the map data, and the controller is provided with a map generating apparatus generating or updating the map data on the basis of the position and the angle of the robot, and the measured distance with respect to the object. Accordingly, it is possible to reduce the computing load of the controller and the robot, and it is possible to achieve a comparatively inexpensive robot system.
Abstract:
A robotic cart pulling vehicle includes a positioning error reducing system for reducing accumulated error in the ded-reckoning navigational system. The positioning error reducing system including at least one of a low load transfer point of the cart attaching mechanism, a floor variation compliance structure whereby the drive wheels maintain a substantially even distribution of load over minor surface variations, a minimal wheel contact surface structure, a calibration structure using at least one proximity sensor mounted on the robot body, and a common electrical and mechanical connection between the cart and the robot vehicle formed by a cart attaching post.
Abstract:
A camera or other sensing unit senses the conditions of articles and mobile entities, including humans within a living space. An article management/operation server manages, within an article database, attribute information about the articles, including operators, according to the information from the sensing unit. The server receives a user's instruction, input through a console unit, and refers to the article database to convert this instruction into a control command, which is then transmitted to a life-support robot.
Abstract:
A camera or other sensing unit senses the conditions of articles and mobile entities, including humans within a living space. An article management/operation server manages, within an article database, attribute information about the articles, including operators, according to the information from the sensing unit. The server receives a user's instruction, input through a console unit, and refers to the article database to convert this instruction into a control command, which is then transmitted to a life-support robot.