Abstract:
An X-ray waveguide showing a small propagation loss and having a waveguide mode with its phase controlled is provided. The X-ray waveguide including: a core for guiding an X-ray in a wavelength band that a real part of the refractive index of a material is 1 or less; and a cladding for confining the X-ray in the core, in which: the X-ray is confined in the core by total reflection at a interface between the core and the cladding; in the core multiple materials having different real parts of the refractive index are periodically arranged; and a waveguide mode of the X-ray waveguide is such that the number of antinodes or nodes of an electric field intensity distribution or a magnetic field intensity distribution of the X-ray coincides with the number of periods of the periodic structure in a direction perpendicular to a waveguiding direction of the X-ray in the core.
Abstract:
A collector transfers an emission of an EUV radiation source to a main intensity spot. The collector has at least one collector subunit including at least one grazing incidence mirror. The grazing incidence mirror transfers EUV radiation from the radiation source to an intensity spot. At least one ellipsoid mirror of the collector has an ellipsoidal mirror surface. The ellipsoidal mirror surface is impinged by an angle of incidence above a critical grazing incidence angle. No more than one collector subunit is arranged in the beam path of an EUV radiation source between a position of the EUV radiation source and the intensity spot. At least some of the EUV rays are only reflected in a grazing manner.
Abstract:
A reflector for an ultraviolet lamp can be used in a substrate processing apparatus. The reflector comprises a centrally positioned longitudinal strip and first and second side reflectors to form a parabolic-type surface. The longitudinal strip and first and second side reflectors have curved reflective surfaces with dichroic coatings and the longitudinal strip comprises a plurality of through holes to direct a coolant gas toward the ultraviolet lamp. A chamber that uses an ultraviolet lamp module with the reflector, and a method of ultraviolet treatment are also described.
Abstract:
A mirror (1) for a microlithography projection exposure apparatus including a substrate (3) and a reflective coating (5). A functional coating (11) between the substrate (3) and the reflective coating (5) has a local form variation (19) for correcting the surface form of the mirror (1), wherein the local form variation (19) is brought about by a local variation in the chemical composition of the functional coating (11) and wherein a thickness of the reflective coating (5) is not changed by the local variation in the chemical composition of the functional coating (11). The local variation in the chemical composition of the functional coating (11) can be brought about by bombardment with particles (15), for example with hydrogen ions.
Abstract:
The exposure device is able to supply only EUV radiation to a mask, while eliminating radiation other than the EUV radiation. A multi layer made from a plurality of Mo/Si pair layers is provided upon the front surface of a mirror, and blazed grooves are formed in this multi layer. Radiation which is incident from a light source device is incident upon this mirror, and is reflected or diffracted. Since the reflected EUV radiation (including diffracted EUV radiation) and the radiation of other wavelengths are reflected or diffracted at different angles, accordingly their directions of progression are different. By eliminating the radiation of other wavelengths with an aperture and/or a dumper, it is possible to irradiate a mask only with EUV radiation of high purity.
Abstract:
A multilayer mirror is configured to reflect extreme ultraviolet (EUV) radiation while absorbing a second radiation having a wavelength substantially-longer than that of the EUV radiation. The mirror includes a plurality of layer pairs stacked on a substrate. Each layer pair comprises a first layer that includes a first material, and a second layer that includes a second material. The first layer is modified to reduce its contribution to reflection of the second radiation, compared with a simple layer of the same metal having the same thickness. Modifications can include doping with a third material in or around the metal layer to reduce its electric conductivity by chemical bonding or electron trapping, and/or splitting the metal layer into sub-layers with insulating layers. The number of layers in the stack is larger than known multilayer mirrors and may be tuned to achieve a minimum in IR reflection.
Abstract:
A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF3, Cl2, and O2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.
Abstract:
To provide an electron beam assisted EEM method that can realize ultraprecision machining of workpieces, including glass ceramic materials, in which at least two component materials different from each other in machining speed in a machining process are present in a refined mixed state and the surface state is not even, to a surface roughness of 0.2 to 0.05 nm RMS. The EEM method comprises a working process in which a workpiece and chemically reactive fine particles are allowed to flow along the working face to remove atoms on the working face chemically bonded to the fine particles together with the fine particles through chemical interaction between the fine particles and the working face interface. The workpiece comprises at least two component materials present in a refined mixed state and different from each other in machining speed in the machining process. After the exposure of the workpiece in its working face to an electron beam to conduct modification so that the machining speed of the surface layer part in the working face is substantially even, ultraprecision smoothening is carried out by working process.
Abstract:
The invention relates to a method for assembling a mirror plate stack 30 comprising a plurality of mirror plates 10 and a base plate 13 onto which the plurality of mirror plates are stacked. Additionally, the invention relates to a method for assembling two or more mirror plate stacks into a rigid unit. In order to improve the assembly accuracy of the mirror plates, it is proposed that the method comprises the steps of providing a base plate 13 with a first mirror plate mounted thereto; providing a handling tool with a second mirror plate; providing a spacer to a first surface of the second mirror plate; positioning the handling tool comprising the second mirror plate with the spacer to align the second mirror plate with the first mirror plate, wherein the second mirror plate is aligned relative to the first mirror plate based on a measured position and shape of the first mirror plate to compensate a deviation of the measured position and shape of the first mirror plate from a pre-defined position and shape of the first mirror plate; attaching the second mirror plate to the first mirror plate by bonding the spacer to the first mirror plate, wherein the spacer determines a pre-defined distance between the first and the second mirror plates; exposing a second surface of the second mirror plate by removing the handling tool from the attached second mirror plate; and measuring the position and shape of the attached second mirror plate after the second surface has been exposed.
Abstract:
First and second grids are arranged between an X-ray source and an X-ray image detector. The first and second grids have the similar configuration except for width, pitch, and thickness of X-ray absorbing sections. The first grid is composed of subdivision grids arranged with substantially no space between each other on a flat surface of a substrate made of glass, for example. Each subdivision grid has a shape of a regular hexagon. Each subdivision grid has the X-ray absorbing sections and X-ray transmitting sections extending in Y direction and arranged alternately in X direction. The X-ray absorbing sections of the adjacent subdivision grids are aligned substantially parallel to each other. The X-ray transmitting sections of the adjacent subdivision grids are aligned substantially parallel to each other. No side of the subdivision grid is parallel to an extending direction of the X-ray absorbing sections and the X-ray transmitting sections.