Abstract:
To reduce the rotational power, an apparatus with a rotational body that is rotationally driven in a fluid-filled housing a rotational directing body is provided between the rotational body and the housing, which is rotatably supported coaxially with respect to the rotational body. The rotational directing body is configured such that in operation it rotates at an intermediate rotational frequency in comparison to the housing and the rotational body. The apparatus is particularly an X-ray radiator having a cathode and anode that are mounted in a vacuum tube in a spatially fixed manner in relation to the tube, the vacuum tube being rotationally driven as a rotational body in a coolant housing.
Abstract:
An improved x-ray tube is disclosed that eliminates the use of a fluid-filled outer housing for cooling tube components. The present x-ray tube includes a cathode housing in which is disposed a cathode assembly having a filament for producing electrons, and an anode housing in which is disposed a rotary anode for receiving electrons produced by the filament. An adapter plate is sized to hermetically receive therein the cathode assembly and the anode housing, thereby forming a unitary vacuum enclosure and tube housing. The improved x-ray tube is cooled by a combination of air and fluid cooling to reduce the buildup of damaging heat within the vacuum enclosure. The features of the present invention are preferably directed to an anode grounded-type x-ray tube, though other x-ray tube types may benefit therefrom.
Abstract:
“An x-ray device component is provided that includes a substrate material upon which is deposited a bond layer, comprising a material such as copper or copper alloy, that acts to secure a powder metal shield material, comprising tungsten and iron, to the x-ray device component. The bond layer and the powder metal shield material possess thermal characteristics compatible with those of the substrate material and the powder metal shield material acts to control radiation emissions from the x-ray device.”
Abstract:
An anode target for use within an x-ray generating device including a target frame having an inner surface and an outer surface and a thermal energy transfer device. The thermal energy transfer device including a heat exchanger having an inner surface and an outer surface, at least a portion of the outer surface of the heat exchanger positioned adjacent to at least a portion of the inner surface of the target frame; a cooling medium circulating through the heat exchanger for convectively cooling the anode target; and a thermal coupling medium disposed between the inner surface of the target frame and the outer surface of the heat exchanger, the thermal coupling medium thermally coupling the target frame with the heat exchanger while permitting relative motion between the target frame and the heat exchanger.
Abstract:
In a rotary anode type X-ray tube apparatus, a rotary anode target model X-ray pipe is received in housing. Housing is coupled by cooler device to supply a coolant in the housing. Anode target is fixed to a rotary cylinder, which is rotatably supported by a stationary shaft. The stationary shaft is provided with an inner hollow space for guiding the coolant. The coolant guided in the housing is split into two flowing streams, and one of the streams is introduced into the space for cooling of stationary shaft.
Abstract:
An anode target for use within an x-ray generating device including a target frame having an inner surface and an outer surface and a thermal energy transfer device. The thermal energy transfer device including a heat exchanger having an inner surface and an outer surface, at least a portion of the outer surface of the heat exchanger positioned adjacent to at least a portion of the inner surface of the target frame; a cooling medium circulating through the heat exchanger for convectively cooling the anode target; and a thermal coupling medium disposed between the inner surface of the target frame and the outer surface of the heat exchanger, the thermal coupling medium thermally coupling the target frame with the heat exchanger while permitting relative motion between the target frame and the heat exchanger.
Abstract:
Air cooled x-ray generating apparatus is provided with a unitary vacuum enclosure having a rotating anode target and a cathode assembly for generating x-rays. The cathode assembly may be placed within the vacuum enclosure through an opening in the top wall thereof, and comprises a disk which completely covers this opening. The unitary vacuum enclosure and the disk form a radiation shield. A plurality of fins are disposed on the exterior side wall of the vacuum enclosure, and a shroud is attached to the fins to provide additional protection of ambient against radiation. The cathode assembly may be placed through a side wall of the vacuum enclosure. The additional protection against excessive radiation in this design is provided by a shielding member placed in proximity to the anode target. The shielding member extends from the side wall of the enclosure and is substantially parallel to the top wall.
Abstract:
A system and method are proposed for cooling the anode of an X-ray tube. A bearing shaft associated with the anode has an associated single rotating seal there around, and contains a liquid metal. A primary liquid metal flow path is used to transfer heat from the anode, and a secondary liquid metal flow path is provided to seal the single rotating seal. Accordingly, the present invention provides an effective means for containing liquid metal in the bearing shaft of an anode assembly, and using the liquid metal to cool the anode of the X-ray tube.
Abstract:
An X-ray generating apparatus is provided with a unitary vacuum enclosure having a rotating anode target and a cathode assembly for generating X-rays transmitted through an X-ray window. The cathode assembly is placed within the vacuum enclosure through an opening in the top wall thereof, and comprises a disk which completely covers this opening. The unitary vacuum enclosure and the disk form a radiation shield. For increasing a thermal capacity of the unitary vacuum enclosure and installing the X-ray generating apparatus into a gantry it further comprises a mounting block which may be coupled to or encompass the unitary vacuum enclosure. The X-ray window is placed within the mounting block. A window adaptor may be utilized for the X-ray window installation.
Abstract:
An X-ray diffraction device comprises a water-cooled X-ray tube which exhibits a line focus as well as, after rotation through 90.degree., a point focus. Contrary to customary X-ray tubes, the cooling water is not supplied via the housing (12) in which the X-ray tube is mounted, but the cooling water connections (52, 54) are provided directly on the X-ray tube at the same side of the robe where the high-voltage connector (16) is provided. As a result, rotation of the robe upon changing over from a line focus to a point focus is not hampered by cooling water connections inside the housing of the tube. An additional advantage of this method of supplying the cooling water resides in the fact that the robe base (56) can also be cooled via these ducts. The base would otherwise become inadmissibly hot due to the loss heat from the filament (60).