Abstract:
A variable duty cycle ion source assembly is coupled to a continuous beam mass spectrometer. The duty cycle can be adjusted based on previous scan data or real time sampling of ion intensities during mass analysis. This provides the ability to control the total number of ions formed, mass analyzed and detected for each ion mass of interest. The frequency of the ion source can be sufficiently high (kHz range) so as to maintain accurate peak centroiding. The ion source assembly can be used for both electron ionization (EI) or chemical ionization (CI) modes of operation.
Abstract:
An object of the present invention is to provide a method of discriminating singly-charged ions from multiply-charged ions by the use of an ion trap type mass spectrometer which is an inexpensive mass spectrometer. This object is achieved by a mass-analyzing method using an ion trap type mass spectrometer which is equipped with a ring electrode and one pair of end cap electrodes and temporarily traps ions in a three-dimensional quadrupole field to mass-analyze a sample, comprising a first step of applying a main high frequency voltage to said ring electrode to form a three-dimensional quadrupole field, a second step of generating ions in said mass analyzing unit or injecting ions from the outside and trapping ions of a predetermined mass-to-charge ratio range in said mass analyzing unit, a third step of applying a supplementary AC voltage having a plurality of frequency components between said end cap electrodes and scanning the frequency components of said supplementary AC voltage, and a fourth step of scanning said main high frequency voltage and ejecting ions from said mass analyzing unit and detecting thereof. With this, chemical noises can be reduced dramatically.
Abstract:
The present invention describes a method of selecting ions in an ion storage device with high resolution in a short time period while suppressing amplitude of ion oscillation immediately after the selection. In a method of selecting ions within a specific range of mass-to-charge ratio by applying an ion-selecting electric field in an ion storage space of an ion storage device, the method according to the present invention is characterized in that the ion-selecting electric field is produced from a waveform whose frequency is substantially scanned, and the waveform is made anti-symmetric by multiplying a weight function whose polarity reverses, or by shifting a phase of the waveform by odd multiple of &pgr;, at around a secular frequency of the ions to be left in the ion storage space. It is preferable that the frequency of the waveforms is scanned in a direction where the frequency decreases. It is also preferable that the weight function is linearly changed at the boundaries of the scanning range of the frequency.
Abstract:
The present invention describes a method of selecting ions in an ion storage device with high resolution in a short time period while suppressing amplitude of ion oscillation immediately after the selection. In a method of selecting ions within a specific range of mass-to-charge ratio by applying an ion-selecting electric field in an ion storage space of an ion storage device, the method according to the present invention is characterized in that the ion-selecting electric field is produced from a waveform whose frequency is substantially scanned, and the waveform is made anti-symmetric by multiplying a weight function whose polarity reverses, or by shifting a phase of the waveform by odd multiple of null, at around a secular frequency of the ions to be left in the ion storage space. It is preferable that the frequency of the waveforms is scanned in a direction where the frequency decreases. It is also preferable that the weight function is linearly changed at the boundaries of the scanning range of the frequency.
Abstract:
A mass spectrometry method in which an improved field comprising two or more trapping fields having substantially identical spatial form is established and at least one parameter of the improved field is changed to excite selected trapped ions sequentially for detection. The changing improved field (preferably with a supplemental field superimposed therewith) can sequentially eject selected ones of the trapped ions from the improved field for detection. An improved field comprising two quadrupole trapping fields can be established in a region defined by the ring and end electrodes of a three-dimensional quadrupole ion trap, and the amplitude of an RF (and/or DC) component (and/or the frequency of the RF component) of one or both trapping fields can be changed to sequentially excite trapped ions. Preferably, a trapping field capable of storing ions having mass to charge ratio within a selected range is established, an improved field is established by superimposing the trapping field with a second trapping field of substantially identical spatial form, and a supplemental field is also superimposed with the trapping field to cause at least some of the trapped ions in the trap region to move away from the center of the trap region.
Abstract:
A method of operation of an ion trap mass spectrometer having a ring electrode and pair of end-cap electrodes in a resonance ejection mode is disclosed. The method includes producing ions from a plurality of biomolecules, applying a trapping RF voltage to the ring electrode, applying an excitation voltage to the end-cap electrodes, scanning the trapping RF voltage in order to sequentially eject the ions, controlling a ration of the amplitude of the trapping RF voltage to the amplitude of the excitation voltage in order that the ratio is generally constant, and determining a ratio of mass to charge of the ejected ions. In one embodiment, a feedback voltage which is proportional to the trapping RF voltage is sensed, and the amplitude of the excitation voltage is controlled as a function of the amplitude of the feedback voltage. In another embodiment, a first value related to the amplitude of the trapping RF voltage and a second value, which is proportional to the first value and related to the amplitude of the excitation voltage, are determined. The amplitude of the trapping RF voltage is modulated employing the first value and the amplitude of the excitation voltage is modulated employing the second value. Preferably, the determined mass-to-charge ratio (m/z) of the ejected ions is equal to a constant (.alpha.) times the trapping RF voltage (V). Associated apparatus and method of calibration are also disclosed.
Abstract:
A mass spectrometry method in which a combined field (comprising a trapping field and a supplemental field) is established and at least one parameter of the combined field is changed to excite ions trapped in the combined field sequentially (such as for detection). The supplemental field is a periodically varying field having an off-resonance frequency, in the sense that the supplemental field frequency nearly matches (but differs from) a frequency of motion of an ion stably trapped by the trapping field alone. Sequential ion excitation in accordance with the invention can rapidly eject a sequence of ions from a trap, or rapidly excite each ion to a degree sufficient for a desired purpose but insufficient for ejection from the trap, because the supplemental field will increase the trajectory of each ion in the sequence and because the supplemental field can have a sufficiently large peak-to-peak amplitude to increase each ion trajectory to a desired magnitude within a desired short time period. The trapped ions can be sequentially excited by holding the supplemental field fixed while changing at least one parameter of the trapping field, or by changing (such as scanning) at least one parameter of the supplemental field while holding the trapping field fixed. The amplitude of the supplemental field is kept sufficiently high to excite ions (via an off-resonance excitation mechanism) before they undergo resonant excitation.
Abstract:
An improved scanning method used in an ion trap mass spectrometer comprises controlling the amplitude of the excitation RF during the mass scan to produce a smooth, nonlinear, highly suitable function. A smooth function is a function with a steady derivative. According to one embodiment of the invention, the excitation amplitude is set proportionally to the square root of the storage amplitude, thus making the excitation amplitude proportional to the root of the mass number.
Abstract:
In a quadrupole ion store or ion trap type mass spectometer, significantly improved mass selection is achieved by simultaneously trapping ions within the mass range of interest and then scanning the applied RF and DC voltages or the frequency .omega. to sequentially render unstable trapped ions of consecutive specific masses. These are passed out through apertures in an end cap to a high gain electron multiplier to provide a signal indicative of the ion mass. Sensitivity and mass resolution is also enhanced by operating the ion trap at a relatively high pressure in the range 1.times.10.sup.-1 to 1.times.10.sup.-5 torr. The presence of collision gas molecules, such as helium, improves sensitivity and mass resolution. In addition, the structure itself is built of stacked units, sealed by O-rings, which are easily disassembled for cleaning.
Abstract:
A quadrupole mass spectrometer includes an ionization chamber, an ion detector, and a quadrupole structure having four electrodes extending therebetween. A d.c. voltage U and a high frequency voltage of amplitude V are linearly superimposed and are applied to the electrodes while maintaining the relationship U Alpha MV - K, where Alpha M denotes a critical U/V ratio. This constrains the mass peaks of a spectrum to be of substantially uniform shape. Variation of the parameter K permits the spectrometer resolution to be varied. In accordance with one aspect of the present invention, the d.c. voltage is maintained constant at values lower than the peak value of the stability curve for atomic hydrogen in a range of smaller values of the voltage amplitude V. The spectrum for atomic hydrogen can thereby be isolated.