Abstract:
A method of treating a tungsten cathode that is comprised of coating the surface of the tungsten cathode with a triple carbonate suspension. The coated tungsten cathode is placed in a heated oxidizing environment (e.g., air, oxygen, or carbon dioxide) and heated for a sufficient amount of time in order to form a diffuse coating of triple carbonates and tungsten oxide. Thereafter, the triple carbonates are reduced to their respective oxides by passing heater current through the tungsten cathode. When used in conjunction with the manufacture of a fluorescent lamp, the formation of this diffuse coating of carbonates enhances the chances of forming barium tungstate during the cathode activation process. As a result, the life of the fluorescent lamp is increased and the amount of phosphor darkening is reduced.
Abstract:
An improved emissive tantalate coating for fluorescent lamps provides long operational lamp life and low lamp end discoloration. The emissive tantalate has the composition Ba.sub.5 Ca.sub.4 Ta.sub.2 O.sub.14 and is applied in powder form to standard fluorescent lamp electrodes.
Abstract:
An all-metal electron emissive structure for low-pressure lamps is disclosed. The all-metal electron emissive structure consisting of one or more metal is operable to emit electrons in response to a thermal excitation, wherein an active region of the electron emissive structure under steady state operating conditions has a temperature greater than about 1500 degree K, and wherein the cathode fall voltage in the discharge medium under steady state operating conditions is less than about 100 volts. A lamp including an envelope, an electrode including the all-metal electron emissive structure, and a medium, is also disclosed.
Abstract:
It is possible to enhance the luminance of a cold-cathode type discharge lamp and to contribute to a prolongation of service life thereof. A discharge lamp 1 is provided with an electrode 3 having a cup 4 with such a shape that a bottom is provided at each of both opposed ends of the glass tube 2. The cup 4 is connected to a lead-in wire 8 which is inserted through the end of the glass tube 2 and held thereby. The collision-preventing ring 5 covering an end surface of the cup 4 is provided to the open end 4a of the cup 4. The porous tungsten disk 6 impregnated with a ternary metal oxide composed of barium (Ba), aluminum (Al), and calcium (Ca) as an electron emission material is provided at a bottom in an inside of the cup 4.
Abstract:
An electron emissive material includes a composition including a metal oxide, where the metal oxide is at least one oxide of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, Hf, or Zr, or any combinations thereof, where the metal oxide is present in a quantity that ranges from about 20% to 100% by weight of the total composition, where the composition is operable to emit electrons in a discharge medium in response to a thermal excitation, wherein the discharge medium under steady state operating conditions producing a total vapor pressure of less than about 2×105 Pa. A lamp including an envelope, an electrode including an electron emissive material and a discharge medium, is also disclosed.