Abstract:
An improved method of forming a semiconductor device is described. Initially, a structure is formed that includes first and second hard masking layers that cover a dielectric layer. A first part of the second hard masking layer and a first part of the first hard masking layer are etched to form an etched region within the hard mask that exposes a first portion of the dielectric layer. That etched region is filled with a sacrificial material. After etching through a second part of the second hard masking layer, the remainder of the sacrificial material is removed prior to subsequent processing.
Abstract:
An organic-inorganic hybrid film is deposited on a substrate by introducing, into a vacuum chamber, a gas mixture of a silicon alkoxide and an organic compound and generating a plasma derived from the gas mixture. Then, a hydrogen plasma process is performed with respect to the organic-inorganic hybrid film by introducing, into the vacuum chamber, a gas containing a reducing gas and generating a plasma derived from the gas. As a result, an organic component in the organic-inorganic hybrid film eliminates therefrom and numerous fine holes are formed in hollow portions from which the organic component has eliminated, whereby a porous film composed of the organic-inorganic hybrid film is obtained.
Abstract:
A recess is formed in an insulating film, and then a conductive film is deposited over the insulating film so as to fill the recess. Thereafter, a heat treatment is performed on the conductive film. Subsequently, the conductive film is partly removed both before and after the step of performing the heat treatment.
Abstract:
The present invention relates to a manufacturing method of a semiconductor device in which a barrier insulating film and a main insulating film having low relative dielectric constant are sequentially formed while a wiring mainly consisting of copper film is coated. Its constitution includes the steps of: forming the barrier insulating film 35a on a substrate 21 subject to deposition, in which an electric power having a first frequency (f1) is applied to a first film forming gas containing at least silicon-containing gas and oxygen-containing gas to transform said first film forming gas into plasma and to cause reaction; and forming the main insulating film 35b having low relative dielectric constant on the barrier insulating film 35a, in which an electric power having a second frequency (f2) higher than the first frequency (f1) is applied to a second film forming gas containing at least the silicon-containing gas and the oxygen-containing gas to transform the second film forming gas into plasma and to cause reaction.
Abstract:
A method of processing a semiconductor substrate involves etching a SiOF layer with HF or HF+H2O. The method can be used to form hollow structures in semiconductor substrates and thus provides a way to make interlayer insulators.
Abstract:
The present invention relates to a manufacturing method of a semiconductor device in which a barrier insulating film and a main insulating film having low relative dielectric constant are sequentially formed while a wiring mainly consisting of copper film is coated. Its constitution includes the steps of: forming the barrier insulating film 35a on a substrate 21 subject to deposition, in which an electric power having a first frequency (f1) is applied to a first film forming gas containing at least silicon-containing gas and oxygen-containing gas to transform said first film forming gas into plasma and to cause reaction; and forming the main insulating film 35b having low relative dielectric constant on the barrier insulating film 35a, in which an electric power having a second frequency (f2) higher than the first frequency (f1) is applied to a second film forming gas containing at least the silicon-containing gas and the oxygen-containing gas to transform the second film forming gas into plasma and to cause reaction.
Abstract:
A process for forming a dual damascene bond pad within an integrated circuit produces a bond pad which is resistant to stress effects and which therefore allows for the bond pad to be formed over active circuitry. The process includes forming a dual damascene structure by forming a bond pad opening having a barrier layer film on the bottom surface of the upper portion of the opening, and forming vias which extend downwardly through the bottom surface. The process produces a bond pad which is resistant to stress effects such as cracking which can be produced when bonding an external wire to the bond pad. Leakage currents between the bond pad and the underlying circuitry are prevented.
Abstract:
Insulating films 34 through 38 (of which insulating films 34, 36, 38 are silicon nitride films and insulating films 35, 38 are silicon oxide films) are sequentially formed on the wires 33 of the fourth wiring layer and groove pattern 40 is transferred into the insulating film 38 by means of photolithography. An anti-reflection film 41 is formed to fill the grooves 40 of the insulating film 38 and then a resist film 42 carrying a hole pattern 43 is formed. The films are subjected to an etching operation in the presence of the resist film 42 to transfer the hole pattern into the insulating films 38, 37, 36 and part of the insulating film 35. Subsequently, the resist film 42 and the anti-reflection film 41 are removed and the groove pattern 40 and the hole pattern 43 are transferred respectively into the insulating film 37 and the insulating film 35 by using the insulating film 38 as mask.
Abstract:
An interlayer insulating film and a first via connected to a diffusion layer in a MOS transistor are formed on the diffusion layer. Then, a low dielectric constant film for a first layer copper interconnection, and the first layer copper interconnection connected to the first via are formed. Then, an etching stopper film, an interlayer insulating film, and a low dielectric constant film for a second layer copper interconnection are formed in this order. Then, a via hole is formed in the etching stopper film and the interlayer insulating film, and a groove is formed in the low dielectric constant film for the second layer copper interconnection. A barrier metal layer is then formed. Thereafter, Ar ions are implanted. At the time, the implantation energy is 50 keV, and the dose is 1null1017 cmnull2. A second via and the second layer copper interconnection are formed, and annealing is performed at a temperature of 400null C.
Abstract:
A contact hole is formed in the first interlayer insulation film on a semiconductor substrate. While making the contact hole remaining a cavity, the second interlayer insulation film is formed on the first interlayer insulation film. Thereafter, a resist film having a wiring groove pattern is formed on the second interlayer insulation film. Using this resist film as a mask, the second interlayer insulation film is etched. By so doing, a wiring groove is formed in the second interlayer insulation film, and the contact hole which remains a cavity is opened, thereby forming a wiring groove and a contact hole substantially simultaneously. A nitride film formed between the first interlayer insulation film and the second interlayer insulation film may, therefore, merely function as an etching stopper. Thus, it is possible to either make the nitride film thinner than the conventional nitride film or to dispense with the nitride film. Hence, it is possible to reduce the capacity of the interlayer wiring.