Abstract:
A method of controlling a transmission rate and a communication device using the same are disclosed. A method of controlling a transmission rate includes changing a path for packet transmission/reception from a first path to a second path, setting a congestion window and a slow-start threshold to be used in the second path to a congestion window and a slow-start threshold used in the first path, and adapting the congestion window and the slow-start threshold to be used in the second path according to a packet loss generated in the second path.
Abstract:
In one aspect, a method and apparatus are disclosed that can provide an efficient and robust HSDPA flow control solution. The RNC (110) can receive information regarding allowed data rate from the Node-B (120) for a data flow in a downlink direction. Based on the received data rate information and optionally based on other predetermined considerations, the RNC (110) adjusts the RLC PDU transmission window size for the data flow. When the RLC PDU transmission window is properly sized, reaction to congestion can be performed quicker relative to the existing Iub flow control.
Abstract:
Systems are provided for sequencing, delivery acknowledgement, and throttling of data packets over a network layer, such as UDP and SMS. To support devices with limited battery resources, the invention incorporates asymmetric retry logic and/or acknowledgements with overlapping ranges, to minimize the transmissions required for the device. The sender of a data-bearing frame does not need to wait for a frame to be acknowledged before sending the next, such that many frames can be “in flight” at once.
Abstract:
In a communication system for transmitting and receiving data between a plurality of terminals via a network through a session relay for relaying communication between the terminals, each of the terminals or the session relay measures a one-way or a round-trip delay time in the network, determines a threshold delay time at which network congestion is judged. With reference to a delay time upon detection of packet loss and the threshold delay time, estimation is made about the possibility that the packet loss results from congestion. A congestion window is changed with reference to the possibility upon detection of the packet loss.
Abstract:
According to the present invention, methods and apparatus are provided to improve the Transmission Control Protocol (TCP) for data such as delay sensitive or bursty data. A maximum send window is adjusted using forward queuing delay and maximum bandwidth parameters. Reverse queuing delay and the number of packets drops are not factored into generation of the maximum send window. Network buffer occupation is bounded and a congestion window is effectively varied using rate shaping and gradual size increases based at least partially on the number acknowledged packets.
Abstract:
Provided is a handover originating base station which transmits data to a handover destination base station, for performing mobile communication terminal handover in a mobile communication system. The handover originating base station is provided with a means for transmitting data whose transmission is not confirmed by a communication terminal, with information which indicates data transmitted just before.
Abstract:
According to the present invention, methods and apparatus are provided to improve the Transmission Control Protocol (TCP) for data such as delay sensitive or bursty data. A maximum send window and a minimum send window are set to correspond to maximum and minimum bandwidth parameters associated with a network. Round trip times are monitored to adjust maximum send windows and minimum send windows. A variable rate shaper is also used to pace packet introduction onto the network.
Abstract:
An embodiment of the present invention provides an apparatus, comprising a transceiver adapted for use in a hop by hop (HbH) relay network and configured to enable fast error correction and reduce ARQ overhead by coupling HARQ and ARQ feedback signaling in each hop of the HbH relay network.
Abstract:
There are in a network comprising at least one transmitter transmitting PDUs according to an ARQ protocol, one receiver receiving transmitted PDUs and acknowledging PDUs with FeedBack Information (FBI) message(s), and a Radio Resource Management (RRM) unit allocating resource based on a TDMA scheme providing series of Time Frames (TFs). The transmitter sends PDUs to the receiver and manages a transmitter ARQ sliding window. The receiver sends back one or more FBI messages to the transmitter and manages a receiver ARQ sliding window. The transmitter, upon reception of FBI message, updates its ARQ sliding window according to received feedback acknowledgement status information, and retransmits PDUs based on its ARQ sliding window.The RRM unit receives FBI messages and manages an extended ARQ sliding window updated according to them. The RRM unit allocates an amount of forward resource and an amount of backward resource, computed based on the extended ARQ sliding window, to the transmitter.
Abstract:
Methods and systems include establishing a connection between two agents, storing a transaction header for data packets being transmitted from one agent to the other, transmitting the packets, updating the transaction header after successful transmission of one or more packets, and re-transmitting the updated transaction header when a disconnect event occurs. The re-transmission of the updated transaction header allows for an efficient re-start or re-connect between the agents of a previously disconnected transmission in a computer network system.