Abstract:
In a preferred embodiment, the invention provides a circuit for reducing bit error rates. A data recovery circuit recovers data from a first HSS link to differential bit pair inputs. Data from the differential bit pair outputs of the data recovery circuit drive differential bit pair inputs to a plurality of FIFOs. The data is then driven from a parallel output of the plurality of FIFOs to the parallel input of a synchronizer. The data is then driven from the parallel output of the synchronizer to the parallel input of a serializer. The serializer, through different bit pair outputs, drives a second serial HSS link.
Abstract:
Self-synchronizing techniques for checking the accuracy of a pseudorandom bit sequence (PRBS) are provided. The PRBS being checked may be generated by a device (e.g., a device under test) in response to a PRBS received by the device (e.g., from a PRBS generator). In an aspect of the invention, a PRBS checking technique includes the following steps/operations. For a given clock cycle, the presence of an error bit in the PRBS generated by the device is detected. The error bit represents a mismatch between the PRBS input to the device and the PRBS output from the device. Then, propagation of the error bit is prohibited for subsequent clock cycles. The prohibition step/operation may serve to avoid multiple errors being counted for a single error occurrence and/or masking errors in the PRBS output by the device.
Abstract:
A method, apparatus, and computer program product for processing health management data for a vehicle. A plurality of modulated signals is received on a bus system in the vehicle. The plurality of modulated signals contains health management data from a plurality of data acquisition units. Each modulated signal has a different frequency from another modulated signal in the plurality of modulated signals to form a plurality of frequencies. The plurality of frequencies is selected to avoid interference with other data transmitted over the bus system by a plurality of data processing systems in the vehicle. The plurality of modulated signals is processed based on the plurality of frequencies used to transmit the plurality of modulated signals.
Abstract:
A method of detecting data transmission errors in a CAN controller includes generating at least one check bit that is verifiable for ensuring the consistency of the transmitted data. A CAN controller that ensures continuous error monitoring during data transmission includes an interface unit for exchanging data with a CAN bus, a memory unit for storing received data and data to be transmitted, and an electronic unit for controlling data transmission between the memory unit and the interface unit. The interface unit of the CAN controller has an arrangement for generating check bits for received data and for verifying check bits for data to be transmitted.
Abstract:
A feedforward equalizer for equalizing a sequence of signal samples received by a receiver from a remote transmitter. The feedforward equalizer has a gain and is included in the receiver which includes a timing recovery module for setting a sampling phase and a decoder. The feedforward equalizer comprises a non-adaptive filter and a gain stage. The non-adaptive filter receives the signal samples and produces a filtered signal. The gain stage adjusts the gain of the feedforward equalizer by adjusting the amplitude of the filtered signal. The amplitude of the filtered signal is adjusted so that it fits in the operational range of the decoder. The feedforward equalizer does not affect the sampling phase setting of the timing recovery module of the receiver.
Abstract:
Described are methods and circuits for margin testing digital receivers. These methods and circuits prevent margins from collapsing in response to erroneously received data, and can thus be used in receivers that employ historical data to reduce intersymbol interference (ISI). Some embodiments detect receive errors for input data streams of unknown patterns, and can thus be used for in-system margin testing. Such systems can be adapted to dynamically alter system parameters during device operation to maintain adequate margins despite fluctuations in the system noise environment due to e.g. temperature and supply-voltage changes. Also described are methods of plotting and interpreting filtered and unfiltered error data generated by the disclosed methods and circuits. Some embodiments filter error data to facilitate pattern-specific margin testing.
Abstract:
A method and device for comparing two generic digital signals over a wide range of data rates and for counting the number of bit errors between digital signals under the conditions of noise and jamming. The bit error tester of the invention compares the digital signal sent with the digital signal received back from the unit under test and outputs the error signal. In the preferred arrangement of the invention, a field programmable gate array is used and a switch and LED display are used to introduce and monitor a time delay in the sent signal to ensure that the signals are in time alignment prior to comparison.
Abstract:
Self-synchronizing techniques for checking the accuracy of a pseudorandom bit sequence (PRBS) are provided. The PRBS being checked may be generated by a device (e.g., a device under test) in response to a PRBS received by the device (e.g., from a PRBS generator). In an aspect of the invention, a PRBS checking technique includes the following steps/operations. For a given clock cycle, the presence of an error bit in the PRBS generated by the device is detected. The error bit represents a mismatch between the PRBS input to the device and the PRBS output from the device. Then, propagation of the error bit is prohibited for subsequent clock cycles. The prohibition step/operation may serve to avoid multiple errors being counted for a single error occurrence and/or masking errors in the PRBS output by the device.
Abstract:
A method and a system for decoding information signals encoded in accordance with a multi-state encoding scheme and transmitted over a multi-dimensional transmission channel by computing a distance of a received word from a codeword. One-dimensional (1D) input signals are processed in a pair of symbol decoders, implemented as look-up tables, to produce a pair of 1D errors, with each representing a distance metric between the input signal and a symbol in one of two disjoint symbol-subsets. The 1D errors are combined based on the multi-state encoding scheme in order to produce a set of multi-dimensional error terms. Each of the multi-dimensional error terms corresponds to a distance between a received word and a nearest codeword.
Abstract:
A method and apparatus to determine whether a network is quality of service enabled is disclosed. The method may send a variety of test packets through a network and depending on how the network handles the packets, a determination may be made whether the network does not support packets with quality of service identification, tolerates packets with quality of service identification or supports packets with quality of service identification.