Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive an indication of a configuration for balanced code communication, the configuration indicating parameters of signals of balanced code communications having sequences, within codewords, that balance. The UE may receive, from a network node, a balanced code communication, the receiving comprising decoding a codeword of the balanced code communication and estimating one or more parameters of communicating with the network node based at least in part on the configuration and based at least in part on using a balancing property of the balanced code communication. Numerous other aspects are described.
Abstract:
A technique of mapping data, suitable for Peak to Average Power Ratio (PAPR) reduction while transmitting data portions via a communication channel limited by a peak power ppeak. The mapping is performed by utilizing a Markovian symbol transition probability distribution with quantized probabilities and by selecting, for a specific data portion at a current channel state, such a binary symbol (called thinned label) which allows puncturing one or more bits in the thinned label's bit sequence before transmission.
Abstract:
A digital television (DTV) receiving system includes an information detector, a resampler, a timing recovery unit, and a carrier recovery unit. The information detector detects a known data sequence which is periodically inserted in a digital television (DTV) signal received from a DTV transmitting system. The resampler resamples the DTV signal at a predetermined resampling rate. The timing recovery unit performs timing recovery on the DTV signal by detecting a timing error from the resampled DTV signal using the detected known data sequence. The carrier recovery unit performs carrier recovery on the resampled DTV signal by estimating a frequency offset value of the resampled DTV signal using the detected known data sequence.
Abstract:
Phase noise estimation and cancellation as disclosed herein may allow cost-efficient increase of capacity in communications by enabling very high QAM levels. The proposed solution is potentially applicable to any single carrier applications where phase noise is a limiting factor and a required order of modulation is very high. For example, disclosed embodiments may enable high QAM levels for microwave backhauls despite severe phase noise sensitivity. One embodiment involves a pilot-aided and BCJR-based sequential search algorithm that accurately estimates and subtracts fast-varying phase noise symbol-by-symbol. Residual BER performance is evaluated under the most challenging phase noise scenarios. FPGA emulation results show detection and removal of a significant amount of phase noise and zero BER performance even for complex 1K-QAM and above.
Abstract:
A digital television (DTV) receiving system includes an information detector, a resampler, a timing recovery unit, and a carrier recovery unit. The information detector detects a known data sequence which is periodically inserted in a digital television (DTV) signal received from a DTV transmitting system. The resampler resamples the DTV signal at a predetermined resampling rate. The timing recovery unit performs timing recovery on the DTV signal by detecting a timing error from the resampled DTV signal using the detected known data sequence. The carrier recovery unit performs carrier recovery on the resampled DTV signal by estimating a frequency offset value of the resampled DTV signal using the detected known data sequence.
Abstract:
The present invention relates to a method and apparatus for channel estimation between a transmitter and a receiver in a wireless communications system. In one arrangement, the method comprises: receiving at the receiver a first sequence of bits representing a first sequence of coded symbols transmitted over the communications channel; decoding the first sequence of coded symbols using maximum-likelihood based decoding including: generating traceback outcomes by tracing backwards the first sequence of bits through a maximum-likelihood based traceback path, the traceback outcomes including a first portion associated with a first traceback depth and a second portion associated with a second traceback depth that is deeper than the first traceback depth; generating a channel estimate of the communications channel based on the first portion of the traceback outcomes; and generating an estimate of at least some information bits coded in the first sequence of coded symbols based on the second portion of the traceback outcomes.
Abstract:
A transmitting system and a method of transmitting digital broadcast signal are disclosed. The method of transmitting digital broadcast signal includes generating signaling data including a transmission parameter, wherein the transmission parameter includes a protocol version field identifying between a first transmission mode and a second transmission mode, forming a data group including mobile service data and the signaling data, forming mobile service data packets including the mobile service data and the signaling data in the data group, transmitting the digital broadcast signal including the data group.
Abstract:
The present invention is directed to a digital broadcast system and a data processing method. A broadcast signal in which mobile service data and main service data are multiplexed is transmitted and received. Then, in a broadcasting receiver, the program table information including information about a service or a program of an ensemble is parsed according to an identifier of the ensemble in which the mobile service data are multiplexed, in the received broadcast signal. And a mobile service is outputted by using the mobile service data and the parsed program table information.
Abstract:
The present invention concerns a system for transmitting a plurality of modes of digital television signals within the same transmission channel where one transmission mode is more robust than another mode. The present invention also concerns a system for receiving and decoding such signals. More specifically, an aspect of the present invention involves a method and an apparatus for utilizing a proper length of preamble data for the improvement of reception. Furthermore, another aspect of the present invention involves a method and an apparatus for inserting a preamble into a proper place in a transmitted data stream relative to the filed synchronization data. Another aspect of the present invention involves a method and an apparatus for decoding trellis-coded data, using the predetermined preamble data.
Abstract:
A transmitting system and a method of transmitting digital broadcast signal are disclosed. The method of transmitting digital broadcast signal includes generating signaling data including a transmission parameter, wherein the transmission parameter includes a protocol version field identifying between a first transmission mode and a second transmission mode, forming a data group including mobile service data and the signaling data, forming mobile service data packets including the mobile service data and the signaling data in the data group, transmitting the digital broadcast signal including the data group.