Abstract:
Apparatus and method for producing pigment nano-particles. One embodiment of the apparatus may comprise a furnace having a vapor region, the furnace vaporizing a pigment precursor material. A precipitation conduit open to the vapor region of the furnace, the precipitation conduit receiving vapor from the vaporized pigment precursor material. A collection fluid port opening into the precipitation conduit, the collection fluid port delivering a collection fluid into contact with the vapor in the precipitation conduit, the vapor condensing to form the pigment nano-particles. A collection system in fluid connection with the precipitation conduit, the collection system collecting the pigment nano-particles in the collection fluid.
Abstract:
The invention provides process and apparatus for conducting an endothermic reaction of an organic' compound in the presence of molecular hydrogen and of multicomponent solids. The process comprises contacting the compound with a solid catalyst for the endothermic reaction and a hydrogen oxidizing solid reagent intermixed with the solid catalyst. Organic products of the endothermic reaction are produced, with evolution of molecular hydrogen. The solid catalyst becomes gradually deactivated by formation of carbonaceous deposits thereon. The evolved hydrogen undergoes an exothermic reaction with the hydrogen oxidizing solid reagent to form a reduction product which comprises deactivated hydrogen oxidizing solid reagent. The deactivated solid catalyst is reactivated by combustion of carbonaceous deposits thereon and the deactivated hydrogen oxidizing solid reagent is reactivated by contacting the reagent with an oxidizing agent in the absence of substantial quantities of hydrogen and in the absence of substantial quantities of organic compounds other than those on the surface of the reagent. One embodiment of the invention provides apparatus in which an endothermic reaction is carried out in the presence of a fluidized bed of catalyst and in the presence of particles of granular hydrogen oxidizing solid reagent which move downwardly through the fluidized catalyst bed, and in which the solid catalyst and solid reagent are separated prior to reactivation thereof in separate reactivation zones.
Abstract:
Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Superior results were achieved for combustion chambers which contained a gap for free flow through the chamber. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results.
Abstract:
In a process for preparing formaldehyde from methanol by dehydrogenation in a reactor in the presence of a catalyst at a temperature in the range from 300 to 1000null C., the catalyst is generated spatially separately from the reactor and at a temperature above the dehydrogenation temperature.
Abstract:
A control scheme is set forth for conversion of variable composition synthesis gas to liquid fuels in a three-phase or slurry bubble column reactor (SBCR). The control scheme allows one to achieve constant or optimum liquid fuel production and constant or limited purge gas flow with highly variable synthesis gas feed condition. This is accomplished by adjusting one or more of the following independent variables: recycle ratio, water addition, and bypass flow.
Abstract:
A method for lowering the cloud/pour point of a waxy crude oil in locations where size and/or weight of the facility may need to be limited (i.e. arctic zones and offshore). The major components of the system comprise a fractionation/quench tower and a reaction furnace. The furnace has sufficient heat input to initiate thermal cracking of wax and the fractionation tower is operated at a temperature sufficient to flash off light hydrocarbons but also low enough to quench thermal cracking reaction. The feed to the furnace comprises a portion of the bottoms stream from the tower and the furnace output is fed back into the tower bottom to be quenched.
Abstract:
A pyrolysis heater particularly for the cracking of hydrocarbons in the production of olefins has a burner arrangement in the firebox which directly heats the hearth of the firebox such that it becomes a radiant surface. This improves the heat flux in the lower portion of the firebox and produces a more uniform vertical heat flux profile over the firebox elevation. The base burners may fire horizontally across the hearth or may comprise porous ceramic burners as a part of the hearth. The base burners operate along with vertically firing hearth burners and optional wall burners in the upper portion of the firebox.
Abstract:
A hybrid BHW-CIRCE process heavy water production system in which most or all of the CECE upper stages of the CIRCE process are replaced with BHW liquid phase catalytic exchange stages. The system allows the CIRCE process to return to a more natural cascade resulting in a more cost effective process.
Abstract:
An improved method and apparatus is set forth for packaging substrates in a monolith reactor, wherein the substrates are positioned in a stacked relationship along a longitudinal axis of the reactor housing. The stack of substrates is supported in a fixed position at the bottom of the stack, and the upper end of the stack is provided with a predetermined constant compression to not only compensate for different expansions between the stacked substrates and the reactor housing, but also to hold the stacked assemblies together in a tight relationship so as to prevent deleterious vibration of the substrates. The compression is preferably applied by spring-loaded means, which may be adjusted by threading a nut against the loading spring.
Abstract:
A method is disclosed for maintaining a volumetric gas to liquid ratio in a segmented gas/liquid flow along a reactor of monolithic catalyst beds in series. The present invention includes the steps of: initiating the segmented gas/liquid flow at a first end of the reactor by introducing feed liquid and feed gas both at a predetermined volume and a predetermined flow rate; injecting an additional amount of gas at least once into any of the spaces between catalyst beds; and combining the segments of the segmented gas/liquid flow at a second end of the reactor. The injection of gas is controlled such that the segmented gas/liquid flow can be maintained near or at the Taylor regime.