Abstract:
A method of hydroprocessing hydrocarbons is provided using a substantially liquid-phase reactor having first and second catalyst beds with a heat transfer section positioned therebetween. The first and second catalyst beds and the heat transfer section are combined within the same reactor vessel. Each catalyst bed having an inlet temperature and an exit temperature and having a hydroprocessing catalyst therein with a maximum operating temperature range. The method hydroprocesses the hydrocarbons and removes sufficient heat from the hydrocarbons using the heat transfer section so that the exit temperature of the hydrocarbons existing the first catalyst bed is substantially maintained below the maximum operating temperature range of the hydroprocessing catalysts in the first bed and, at the same time, also providing the hydrocarbons to the second catalyst bed at the inlet temperature so that the exit temperature of the hydrocarbons at the exit of the second catalyst bed also does not exceed the maximum operating temperature range of the hydroprocessing catalyst in the second bed.
Abstract:
Pollutant decomposition device comprising a flexible sheet-substrate provided with at least one photocatalytic surface wherein the sheet-substrate comprises one or more internal slits with a layout that provides formation of flow restricting means upon predetermined deformation of the sheet substrate. There is also provided a method of producing a pollutant decomposition device.
Abstract:
Disclosed herein are wall flow reactors that are suitable for the production of hydrogen gas from hydrocarbon and/or its derivative feed streams. The wall flow reactors are generally comprised a monolithic honeycomb substrate defining a plurality of cell channels bounded by porous channel walls that extend longitudinally from an upstream inlet end to a downstream outlet end; wherein a first portion of the plurality of cell channels are plugged at the downstream outlet end to form inlet cell channels and a second portion of the plurality of cell channels are plugged at the upstream inlet end to form outlet cell channels. A plurality of catalyst layers are positioned within at least a portion of the plurality of cell channels and comprise at least a first catalyst layer and a second catalyst layer. Also disclosed are methods for treating reactant feed streams.
Abstract:
A hydrogen generating system regulates its rate of hydrogen generation by monitoring one or more parameters of the hydrogen generation process and then providing relative movement between the fuel tank and the catalyst chamber so as to increase or decrease the rate of hydrogen generation.In the disclosed embodiments, the catalyst chamber is disposed in a tank containing the fuel. The relative movement provided moves the catalyst chamber toward the fuel solution so as to increase the rate of hydrogen generation and moves the catalyst chamber away from the fuel solution to decrease such generation. Advantageously, such self-regulation can be provided without an external power source and can be varied to meet the requirements of different commercial applications. The overall system can be readily fabricated using commercially available parts.
Abstract:
Complex organic molecules, such as polychlorinated biphenyls can be degraded on porous titanium ceramic membranes by photocatalysis under ultraviolet light.
Abstract:
A novel fixed-bed catalyst structure obtained using honeycomb elements, for highly exothermic and endothermic chemical reactions, wherein the required heat exchange, both in the liquid phase and in the gas phase, is forcibly effected in the fixed catalyst bed by means of static mixing elements made of inert ceramic and/or metallic material or completely of catalyst material, between the individual honeycomb elements.
Abstract:
Systems are described for using multiple closely-packed spheres. In one system for passing fluid, a multiplicity of spheres lie within a container, with all of the spheres having the same outside diameter and with the spheres being closely nested in one another to create multiple interstitial passages of a known size and configuration and smooth walls. The container has an inlet and outlet for passing fluid through the interstitial passages formed between the nested spheres. The small interstitial passages can be used to filter out material, especially biological material such as cells in a fluid, where the cells can be easily destroyed if passed across sharp edges. The outer surface of the spheres can contain a material that absorbs a constitutent in the flowing fluid, such as a particular contamination gas, or can contain a catalyst to chemically react the fluid passing therethrough, the use of multiple small spheres assuring a large area of contact of these surfaces of the spheres with the fluid. In a system for storing and releasing a fluid such as hydrogen as a fuel, the spheres can include a hollow shell containing the fluid to be stored, and located within a compressable container that can be compressed to break the shells and release the stored fluid.
Abstract:
Hydrogen is generated by heating a metal surface under water to a temperature at which the metal reacts with water to produce hydrogen. The hydrogen can then be used, for example, as a fuel for a motor vehicle engine or another type of engine. The heating can be done electrically by providing an electrical discharge, under water, between the metal surface and another surface. Water and the metal surface are consumed.
Abstract:
A flow reactor for reacting a feedstock with a proteinaceous preparation immobilized on and within the pores of a support medium while traversing a spiral path between adjacent turns of said spiral. A support medium has a spacing means placed on one surface thereof. The support medium and spacing means are then wound upon a porous core to form a jelly roll-like spiral configuration. The marginal edges of the reactors are sealed but provision is made to introduce or remove materials from said core and the free end of the spiral is left open to also introduce or remove materials. In a first form the feedstock is introduced into the core and the reacted feedstock is removed from the spiral free end. In a second form the introduction and removal of the feedstock and reacted feedstock is reversed. The spacing means may be a series of ribs on the support medium or may be a net-like sheet.
Abstract:
In a process for reduction or oxidation of materials in aqueous solution byassing a reagent gas through a finely porous catalyst layer into the solution, bodies of electrically conducting material which in the aggregate have a large surface are brought into electrically conducting connection with the catalyst layer on its side facing the solution in order to increase the rate of conversion of the dissolved material. The conducting bodies are distributed in the solution at least in the region of the catalyst layer and increase the effective surface for the conversion of the dissolved material. The invention is particularly useful in connection with catalyst layers provided with an electrically conducting protective cover through which gas and solution may pass on the side of the catalyst layer facing the solution as disclosed in a related application of the same inventors Ser. No. 500,941 filed June 3, 1983.