Abstract:
A reforming reactor for an endothermic process including a plurality of reformer tubes allowing a flow of hydrocarbons and at least one further fluid inside the tubes is provided. Wherein the reformer tubes contain in their interior a catalyst for the conversion of the hydrocarbons and the at least one further fluid to synthesis gas, and a means for heating the reformer tubes. Wherein at least a portion of the plurality of reformer tubes is provided with one or more elements for enlarging the outer surface area of a reformer tube, and the catalyst includes a structured catalyst. Also an endothermic process for the production of synthesis gas, including allowing a flow of hydrocarbons and at least one further fluid inside a plurality of reformer tubes, and heating the plurality of reformer tubes to convert said hydrocarbons and the at least one further fluid to synthesis gas.
Abstract:
A process of dissociating ammonia into a dissociated hydrogen/nitrogen stream in catalyst tubes within a radiant tube furnace and an adiabatic or isothermal unit containing catalyst, along with downstream purification process units to purify the dissociated hydrogen/nitrogen stream into high purity hydrogen product.
Abstract:
A structured catalyst for catalyzing an endothermic reaction of a feed gas to convert it to a product gas Including at least one macroscopic structure of an electrically conductive material and at least one connector attached to the at least one macroscopic structure, wherein the macroscopic structure supports a catalytically active material.
Abstract:
Reactor-exchanger comprising at least 3 stages with, on each stage, at least one area promoting the heat exchanges and at least one distribution area upstream and/or downstream of the area promoting the heat exchanges, characterized in that the area promoting the heat exchanges comprises cylindrical millimetric channels, there being 1 to 1000 of said channels with a length of between 10 mm and 500 mm.
Abstract:
A method of growing carbon nanotubes includes following steps. A reactor is constructed, wherein the reactor includes a reactor chamber and a rotating mechanism inside the reactor chamber. A carbon nanotube catalyst composite layer is applied, the carbon nanotube catalyst composite layer is configured to be rotated by the rotating mechanism in the reactor chamber, and the carbon nanotube catalyst composite layer includes a carbon nanotube layer and a number of catalyst particles dispersed in the carbon nanotube layer. The carbon nanotube catalyst composited layer is positioned inside the reactor chamber. A mixture of carbon source gas and carrier gas is introduced into the reactor chamber. The carbon nanotube catalyst composite layer is rotated. The carbon nanotube catalyst composite layer is heated to grow carbon nanotubes.
Abstract:
A method for determining temperature information for a plurality of tubes in a furnace where one or more digital images provide temperature information for imaged tubes, and temperature information for non-imaged tubes is determined from the temperature information for the imaged tubes and measured temperatures of combined effluent from the imaged and non-imaged tubes.
Abstract:
A catalytic reactor is provided comprising a plurality of first flow channels including a catalyst for a first reaction; a plurality of second flow channels arranged alternately with the first flow channels; adjacent first and second flow channels being separated by a divider plate (13a, 13b), and a distributed temperature sensor such as an optical fibre cable (19). The distributed temperature sensor may be located within the divider plate, or within one or 10 more of the flow channels.
Abstract:
Invention presents a method of increasing the CO to H2 ratio of syngas. The method comprises passing syngas over a first rector (10) containing Cu at a first temperature effective for the reaction of CO2 within the syngas with the Cu to form copper oxide and CO. The temperature of the syngas is then reduces to a second temperature effective for the for the reaction of hydrogen within the syngas with copper oxide to form Cu and H2O. The syngas is then passed over a second rector (12) containing copper oxide so that the H2 within the syngas reacts with the copper oxide.
Abstract translation:本发明提出了增加合成气的CO与H 2比的方法。 该方法包括使合成气在含有Cu的第一温度下在第一温度下使合成气通过合成气有效地使合成气内的CO 2与Cu反应形成氧化铜和CO,然后将合成气的温度降低到第二温度 用于使合成气内的氢与氧化铜反应形成Cu和H 2 O. 然后使合成气通过含有氧化铜的第二反应器(12),使得合成气内的H 2与氧化铜反应。
Abstract:
The present disclosure relates to a single shell open interstage reactor (“SSOI”). The SSOI comprises a first reaction stage, an interstage heat exchanger, an open interstage region, and a second reaction stage. The SSOI may be configured for upflow or downflow operation. Further, the open interstage region of the SSOI may comprise a supplemental oxidant feed. When the open interstage region comprises a supplemental oxidant feed, the SSOI may further comprise a supplemental oxidant mixing assembly. Processes for producing acrylic acid through the oxidation of propylene are also disclosed.
Abstract:
The inventing relates to hydrocarbon conversion, and more particularly to catalytically converting alkane in the presence of oxygen released from an oxygen storage material. Conversion products include C2 hydrocarbon, such as C2+ olefin. The hydrocarbon conversion process can be an oxidative coupling reaction, which refers to the catalytic conversion of methane in the presence of oxidant to produce the olefin product. Flow-through reactors can be used to carry out oxygen storage and the oxidative coupling reaction. Reverse-flow reactors are examples of flow-through reactors, which can be used to carry out oxygen storage and the oxidative coupling reaction.