Abstract:
A power generation system according to an embodiment includes: a gas turbine system including a compressor component, a combustor component, and a turbine component; an airflow generation system coupled to an expander shaft downstream of the gas turbine system for drawing in a flow of ambient air through an air intake section; a mixing area for receiving an exhaust gas stream produced by the gas turbine system; a flow directing system for directing the flow of ambient air generated by the airflow generation system to the mixing area to reduce a temperature of the exhaust gas stream; and an exhaust processing system for processing the reduced temperature exhaust gas stream.
Abstract:
A CO2 power generation system includes a furnace to burn fuel, a turbine operated by a working fluid supplied thereto, the working fluid being heated by heat generated in the furnace, a recuperator exchanging heat with the working fluid passing through the turbine, a cooler to cool the working fluid passing through the recuperator, and a compressor to compress the working fluid passing through the cooler, wherein the working fluid passing through the compressor is circulated to the furnace, and the working fluid is supercritical CO2.
Abstract:
A gas turbine engine recuperator recuperator including exhaust passages providing fluid flow communication between an exhaust inlet and an exhaust outlet, the exhaust inlet being oriented to receive exhaust flow from a turbine of the engine and the exhaust outlet being oriented to deliver the exhaust flow to atmosphere, the exhaust passages having an arcuate profile in a plane perpendicular to a central axis of the recuperator to reduce a swirl of the exhaust flow. Air passages are in heat exchange relationship with the exhaust passages and providing fluid flow communication between an air inlet and an air outlet, design to sealingly respective plenum of the gas turbine engine.
Abstract:
An intake arrangement for a compressor in a gas turbine power plant includes at least a passageway having an elongated portion, and a circular portion at an end of the elongated portion. The circular portion may be arranged in proximity to the compressor at around a compressor inlet. The passageway may be divided at least circumferentially and radially across the entire elongated portion and at least partially across the circular portion to configure a plurality of flue gas and air inlet segments for respectively conveying flue gas and air streams therethrough. The flue and air gas streams from each of the respective plurality of flue gas and air inlet segments, converge to be blended into a target mass stream for being conveyed into the compressor.
Abstract:
A method for operating a gas turbine engine unit with a compressor section operable by a O2-rich first working fluid and a turbine section operable by a O2-lean second working fluid, and a unit for an oxygen extraction process, the method including: discharging all O2-rich first working fluid of the compressor section from a compressor of the compressor section to the unit for the oxygen extraction process so that all O2-rich first working fluid of the compressor section is used for the oxygen extraction process, extracting O2 from the O2-rich first working fluid by an oxygen extraction process, cooling at least one wall of the at least one combustion chamber of the combustion section by the O2-rich first working fluid while bypassing the at least one combustion chamber and heating the O2-rich first working fluid while by-passing the at least one combustion chamber.
Abstract:
A method for operating a gas turbine system in part load operation wherein a compressor pre-guide blade adjustment for part load operation is initiated in case of a given state of a flow medium which flows into a compressor, a value of the initiated compressor pre-guide blade adjustment is compared with a compressor pre-guide blade adjustment limit value which is determined depending on the state of the flow medium, and, if the value of the initiated compressor pre-guide blade adjustment meets a predefined condition with regard to the compressor pre-guide blade adjustment limit value, at least one measure is initiated for changing the state of the flow medium which flows into the compressor in part load operation. An arrangement has an actuating device, determining device and control unit to carry out the method. The gas turbine system has an anti-icing device and/or an intake air heating device and the arrangement.
Abstract:
The present invention is a prime mover with recovered energy driven compression for stationary and motor vehicle application. Efficient low compression operation, especially beneficial to small gas turbines, is enabled with either ambient or cryogenic intake air. Recovered energy, liquefied air cooling and re-liquefaction of air by a cryogenic sink minimize motive fluid compression work of a jet compressor driving exhaust gas recirculation. Regenerative heat exchanger terminal temperature difference relative to turbine temperature drop and heat exchanger surface area are reduced.
Abstract:
Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
Abstract:
A thermal management system for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a heat exchanger and a valve that controls an amount of a first fluid that is communicated through the heat exchanger A first sensor senses a first characteristic of a second fluid that is communicated through the heat exchanger to exchange heat with the first fluid and a second sensor senses a second characteristic of the second fluid. A positioning of the valve is based on at least one of the first characteristic and the second characteristic.
Abstract:
A system for the gradual oxidation of fuel is disclosed. The system includes an oxidizer that has a reaction chamber with an inlet and an outlet. The reaction chamber is configured to receive a fluid comprising an oxidizable fuel through the inlet. The oxidizer is configured to maintain a flameless oxidation process. The system also includes a heating chamber with an inlet and an outlet. The inlet of the heating chamber is in fluid communication with the outlet of the reaction chamber. The heating chamber is configured to receive the fluid from the reaction chamber and selectably heat the fluid.