Abstract:
An apparatus for X-ray CT imaging including an X-ray irradiation unit configured to irradiate an X-ray toward a subject, an X-ray detector having a plurality of X-ray detection elements along a channel direction and a row direction, a couch on which the subject can be arranged, a rotation unit on which the X-ray irradiation unit and the X-ray detector are oppositely disposed and rotate around the couch, a controller configured to execute a helical scan while fluctuating an X-ray focal spot along a body axis direction of the subject by controlling the X-ray irradiation unit, and an image processing unit configured to generate a reconstructed image based on data acquired by the helical scan, wherein the controller is further configured to set a magnitude of fluctuation of the X-ray focal spot so that data acquisition loci of the helical scan do not overlap each other.
Abstract:
A power generation system includes an input to receive a low-voltage alternating current and a number N of voltage-conversion modules coupled to the input, each electrically connected in series. Each voltage-conversion module includes a transformer configured to convert the low-voltage alternating current into a high-voltage alternating current. Each voltage-conversion module includes a multiplier configured to convert the high-voltage alternating current from the transformer into a high-voltage direct current. The multiplier includes a positive multiplier part and a negative multiplier part. The positive multiplier part and the negative multiplier part each includes a pair of input terminals connected in parallel with the transform and at least one multiplier stage comprising a single diode and a capacitor assembly. The number N is an even number between 4 and 24.
Abstract:
An apparatus and method for providing a predefined x-ray field is presented. Briefly in accordance with one aspect of the present disclosure, the apparatus includes a cathode unit configured to emit electrons within a vacuum chamber. The apparatus further includes an anode unit configured to generate x-rays when the emitted electrons impinge on a target surface of the anode unit. Also, the apparatus includes a collimating unit comprising a primary set of blades disposed in the vacuum chamber at a first distance from the anode unit for collimating the generated x-rays to provide the predefined x-ray field at a detector.
Abstract:
Radiation generating apparatus includes an envelope and a radiation tube disposed inside the envelop. A cooler is connected to the envelope at an inlet port and an outlet port. Coolant circulates between the cooler and the envelope through the inlet port and outlet port. A partition plate divides the inside of the envelope into a first chamber on the side of the radiation tube and a second chamber on the side of the inlet port. An air bubble chamber provided at an upper portion of the second chamber collects air bubbles formed in the coolant. A protrusion projecting toward the second chamber is provided at an end of the partition plate on the side of the opening. Since the air bubbles are moved due to buoyancy force or inertial force when the apparatus is rotated, it is possible to prevent radiation from passing through the air bubbles.
Abstract:
A tomography apparatus has an annular channel and at least one ventilation element for the purpose of drawing off an air current flowing through the annular channel. The ventilation element contains an intake window that is located in the annular channel for the purpose of drawing off at least a portion of the air current. In order to obtain an even flow profile at an output window of the ventilation element, the intake window has a greater effective intake cross-section at both sides than at the middle. By such evening the flow profile at the output window, turbulence and air current interruptions of the air can be generally avoided, such that when operating the tomography apparatus, disrupting acoustic emissions may be reduced, or a higher air flow and thereby a greater cooling effect may be obtained.
Abstract:
The present disclosure is directed towards the prevention of high voltage instabilities within X-ray tubes. For example, in one embodiment, an X-ray tube is provided. The X-ray tube generally includes a stationary member, and a rotary member configured to rotate with respect to the stationary member during operation of the X-ray tube. The X-ray tube also includes a liquid metal bearing material disposed in a space between the shaft and the sleeve, a seal disposed adjacent to the space to seal the liquid metal bearing material in the space, and an enhanced surface area material disposed on a side of the seal axially opposite the space and configured to trap within the enhanced surface area material liquid metal bearing material that escapes the seal.
Abstract:
Disclosed is an X-ray generator (1) comprised of an electron emission element (10) which receives energy to emit electrons; a metal piece (20) which receives the electrons emitted from the electron emission element (10) to emit an X-ray; and energy supply portions (3, 5) which supply energy to the electron emission element (10), wherein the energy supply portions (3, 5) irradiate a pyroelectric element functioning as an electron emission element with, for example, ultraviolet pulsed light, and a high-energy local portion is formed in the pyroelectric element. Thus, the X-ray generator wherein the size thereof can be reduced, and an on/off control for the generation of X-ray can be easily performed, can be provided.
Abstract:
A miniature X-ray tube for intravascular or intracorporeal radiation treatment in living beings is proposed. The X-ray tube comprises a cylindrical housing section with a longitudinal axis. The miniature X-ray tube also comprises a cylindrical or cylindrical-tube-shaped first field emission cathode arranged concentrically about the longitudinal axis in the housing with a plurality of carbon nanotubes which emit electrons radially outward. The miniature X-ray tube also comprises a second field emission cathode in the housing with a plurality of carbon nanotubes which emit electrons in the direction of longitudinal axis. The miniature X-ray tube only emits little heat and is robust against mechanical stresses.
Abstract:
An x-ray tube includes an anode, a first chamber enclosing the anode and having a first pressure therein, a cathode, and a second chamber enclosing the cathode and having a second pressure therein. A separator is positioned between the first and second chambers and has a conductance limiter therein.
Abstract:
An x-ray tube includes a vacuum chamber, a cathode positioned within the vacuum chamber and configured to emit electrons, and an anode positioned within the vacuum chamber to receive the electrons emitted from the cathode and configured to generate a beam of x-rays from the electrons. The x-ray tube further includes a window positioned to pass the beam of x-rays therethrough, an electron collector structure having an aperture formed therein to allow passage of x-rays therethrough, and a layer attached to the electron collector structure and configured to at least partially absorb or reduce diffraction of x-rays that contact the layer.