Abstract:
A lightweight flexible light-emitting device which is able to possess a curved display portion and display a full color image with high resolution and the manufacturing process thereof are disclosed. The light-emitting device comprises: a plastic substrate; an insulating layer with an adhesive interposed therebetween; a thin film transistor over the insulating layer; a protective insulating film over the thin film transistor; a color filter over the protective insulating film; an interlayer insulating film over the color filter; and a white-emissive light-emitting element formed over the interlayer insulating film and being electrically connected to the thin film transistor.
Abstract:
A display pixel includes: a first stack including a transparent anode layer having first and second anode elements, a cathode layer, and a functional layer disposed between the anode layer and the cathode layer; a second stack disposed on the first stack and including an insulating layer and a conductive column line disposed on a surface of the insulating layer; a conductive bridging line disposed in the first stack and connected to the first and second anode elements; and an upper via unit including an upper contact via extending from the conductive column line into the first stack and connected to the bridging line or one of the first and second anode elements.
Abstract:
A light emitting device includes an LED and a layer of luminophoric particles, such as phosphor, that are non-homogeneous in size as a function of distance away from the LED. For example, a first layer of relatively large size phosphor particles may be provided between a second layer of relatively small size phosphor particles and the LED. The large particles can provide high brightness and the small particles can reduce angular color temperature variation in emitted light.
Abstract:
An illumination system and a projection apparatus are provided. The projection apparatus comprises the illumination system and an imaging system for forming an image. The illumination system comprises a plurality of light source modules, a first wavelength transformer, an optical apparatus and a first angle selective film. The light source modules are used for generating a plurality of light beams. The first wavelength transformer is disposed at a predetermined position. The optical apparatus is disposed between the light source modules and the first wavelength transformer for focusing the light beams to the predetermined position. The first angle selective film is disposed on the first wavelength transformer. The first wavelength transformer is disposed between the first angle selective film and the optical apparatus. The first angle selective film is used for angle-selectively filtering the light beams passing through the first wavelength transformer.
Abstract:
A method for producing electroluminescent textiles and to electroluminescent textiles produced accordingly is provided. A layer arrangement (10) of an electroluminescent textile comprises a textile substrate (1), a protective layer (2), a first transparent conductive layer or front electrode (3), a light-emitting layer (4), a dielectric layer (5), a second conductive layer or back electrode (6), a conductive rail (7), and a cover layer (8). As associated method is further provided.
Abstract:
Provided is a method of manufacturing an organic EL device, wherein a device which has a cathode, an anode facing the cathode, and an organic layer is disposed between the cathode and the anode is provided, a pulsed laser is transmitted through the cathode and is irradiated to the organic layer, and a conductive part having an electrical resistance value lower than that of the organic layer is formed in the organic layer.
Abstract:
A green-emitting phosphor having the formula AaBbCcOdNe:RE, wherein A is a positively charged divalent element; B is a positively charged trivalent element; C is a positively charged tetravalent element; and RE is a rare earth activator. The parameter a ranges from about 0.5 to about 1.5; the parameter b ranges from about 0.8 to about 3.0; the parameter c ranges from about 3.5 to about 7.0; the parameter d ranges from about 0.1 to about 3.0; and the parameter e ranges from about 5.0 to about 11.0. A is at least one of Mg, Ca, Sr, Ba, and Zn; B (the letter) is at least one of B (boron), Al, Ga, and In; C (the letter) is at least one of C (carbon), Si, Ge, and Sn; O is oxygen; N is nitrogen; and RE is at least one of Eu, Ce, Pr, Tb, and Mn.
Abstract:
A light emitting element according to the invention comprises a plurality of layers which is interposed between a pair of electrodes, in which at least one of the plurality of layers is formed of a layer containing a light emitting material, and the layer containing a light emitting material is interposed between a layer containing an oxide semiconductor and/or metal oxide and a material having a higher hole transporting property than an electron transporting property, and a layer containing an oxide semiconductor and/or metal oxide, a material having a higher electron transporting property than a hole transporting property and a material which can donate electrons to the material having a higher electron transporting property than a hole transporting property.
Abstract:
An organic light emitting diode (OLED) display with improved display unit sealing performance is provided. The OLED display includes a substrate, a display unit formed over the substrate and including a plurality of pixels, a conductive contact layer disposed at a distance from the display unit around the display unit, and a sealing member facing the display unit and being fixed to the substrate by the conductive contact layer. The sealing member includes a plurality of metal layers laminated with an insulating adhesive layer formed therebetween, and the plurality of metal layers is electrically connected to the display unit through the conductive contact layer.
Abstract:
An organic light emitting diode display and a method of fabricating the same are disclosed. In one embodiment, the method includes providing a base substrate including a first device region and a first encapsulation region, wherein the first encapsulation region is located on both sides of the first device region and forming an organic light emitting diode (OLED) on the first device region. The method further includes providing an encapsulation substrate including a second device region and a second encapsulation region corresponding to the first device region and first encapsulation region, respectively, forming a light transmission layer on the second device region and forming an inner filler on the light transmission layer.