Abstract:
A valve operating mechanism for operating a pair of valves of an internal combustion engine, includes a camshaft rotatable in synchronism with rotation of the internal combustion engine and having a first low-speed cam, a second low-speed cam, and a high-speed cam which have different cam profiles, respectively, the first and second low-speed cams being disposed one on each side of the high-speed cam, a rocker shaft, and first, second, and third rocker arms rotatably mounted on the rocker shaft and held in sliding contact with the first low-speed cam, the second low-speed cam, and the high-speed cam, respectively, for operating the valves according to the cam profiles of the cams. A selective coupling is operatively disposed in and between the first, second, and third rocker arms for selectively interconnecting the first, second, and third rocker arms to allow angular movement thereof in unison and disconnecting the first, second, and third rocker arms to allow separate angular movement thereof.
Abstract:
In an control apparatus for controlling a timing of injection of fuel to be injected into an internal combustion engine, the apparatus comprises a closed loop system in which the data showing the actual timing of injection of of fuel is fed back. When the condition of the operation of the engine becomes a predetermined state, the control system is changed from the closed loop system to another system in which an adjusting member for adjusting the timing of injection of fuel is controlled by a signal which is not related to the actual timing of injection. As a result, the stability of the operation in low engine speed zone is remarkably improved.
Abstract:
An electronic fuel injection control system for use with an internal combustion engine, which includes means for generating at least one kind of coefficient for correcting the value of basic fuel injection quantity data on the basis of output values of means for detecting engine operating condition parameters inclusive at least of engine temperature, and also includes means for setting the value of the above correction coefficient to a value corresponding to a predetermined value of an engine operating condition parameter concerned which falls within a range within which the value of the same parameter is variable during normal engine operation, when an output value of the detecting means becomes outside a range within which the same output value is variable during normal operation of the engine.
Abstract:
A two wheel vehicle comprising a vehicle body having a front wheel and a rear wheel with an internal combustion engine mounted on the mid portion of the frame is provided. The engine is provided with a supercharger having an exhaust turbine provided on an exhaust passage side thereof and a compressor provided on an intake passage side thereof and arranged to move with the turbine. The supercharger is positioned in a space defined by the engine and a supporting frame which supports the engine and is interposed between the engine and the front wheel. The defined space is remote from the driver so that the driver is not affected by the supercharger. The supercharger may be mounted on the supporting frame so that it is protected against external frontal or lateral forces.
Abstract:
Reduction of NO.sub.x emissions from a four-cycle stratified charge internal combustion piston engine is accomplished by (a) spark ignition of a rich mixture in a first chamber containing residual exhaust gas, followed by (b) torch ignition of rich mixture in a second chamber under turbulent conditions, causing (c) torch ignition of a stratified charge in a lean mixture in the main combustion chamber. The result is a reduction in peak temperature in the combustion process, with consequent reduction in NO.sub.x emissions in the engine exhaust gases. Exhaust gas is not recirculated. Said first chamber, which contains residual gas from the previous combustion cycle, contains the spark gap between spark plug electrodes and the spark gap is located near a restricted connection between the first and second chambers and remote from a closed end of the first chamber. Means are provided for changing the volume of said first chamber while the engine is operating, in accordance with variations in load on the engine.
Abstract:
An information recording medium 100 according to one aspect of the present invention includes a disc substrate 1 formed by a resin, and a thickness thereof in a data area 102 is 0.2 mm or less. The information recording medium 100 includes a step 110 in an inner periphery area 101, the step having a height of 1 mm or more and 3 mm or less. The step 110 includes an acute-angle edge portion 111 used for positioning a center of the information recording medium 100 when spinning the information recording medium 100; and an angle θ of an inner side of a cross section of the acute-angle edge portion 111 is 50 degrees or more and 80 degrees or less.
Abstract:
An electronic part includes a first electronic member having a wiring side. An anisotropic conductive sheet has a first side and a second side opposite to the first side and is disposed on the first electronic member so that the wiring side contacts the first side. A second electronic member has a third side and a fourth side opposite to the third side and is disposed on the anisotropic conductive sheet so that the second side contacts the third side. The second electronic member is electrically connected to the first electronic member through the anisotropic conductive sheet. An elastic body has a fifth side and a sixth side opposite to the fifth side and is disposed on the second electronic member so that the fourth side contacts the fifth side. A pressing member is disposed on the sixth side of the elastic body.
Abstract:
When displaying moving images by using liquid crystal panels and others, a problem exists in that tail streaks occur, and image degradation is resultantly caused. To solve this problem, an echo suppression circuit divides a video signal into a pair composed of two successive frames for comparison between these two frames in signal level for the purpose of suppressing an echo phenomenon occurring when a liquid crystal panel displays video signals including moving images. If these two frames are not the same in signal level, the signal is accordingly corrected so as to equalize the signal level of these frames. Based on the video signals and others corrected by the echo suppression circuit, a controller operates the liquid crystal panel with AC drive through a source driver and a gate driver. As such, the drive voltage used to operate the liquid crystal panel with AC drive is adjusted so as to be balanced between positive and negative. In this manner, the tail streaks are prevented when displaying moving images.
Abstract:
A sheet-like probe and a method of producing the probe. In the probe electrode structure bodies do not come out from an insulation film and achieve high durability, and in a burn-in test for a wafer having a large area and for a circuit device having to-be-inspected electrodes with small intervals, positional displacement, caused by temperature variation, between the electrode structure bodies and the to-be-inspected electrode can be reliably prevented for stable connection conditions. The sheet-like probe includes an insulation layer and a contact film provided with electrode structure bodies arranged on the insulation layer to be apart from each other in the surface direction of the insulation layer and penetratingly extend in the thickness direction of the insulation layer. The electrode structure bodies each are composed of a surface electrode section exposed to the front surface of the insulation layer.
Abstract:
In forming a plastic mold product having an inner hole, a flash of a degree which is required to be removed in a following step is prevented from occurring. The cutter punch 12 in one of the stationary mold 1 and the movable mold 2, the gas passage 7 in at least one of the stationary mold 1 and the movable mold 2 to communicate with the cavity 54, a valve provided on a gas pipe which communicates with the gas passage 7, and a controller are provided. The cutter punch 12 is adapted to be movable between a normal position for injection of the melted resin and a projected position in which the cutter punch 12 projects into the cavity 54 so that a clearance remains between the cutter punch 12 and its counterpart at the position for forming the optical disk substrate with the inner hole, with the gas coming out of the gas passage being capable of flowing into the clearance. The controller controls the movement of the cutter punch 12 and the opening and closing of the valve in conjunction with the injection of the resin.