Abstract:
The invention is a fluid distribution device for coupling with a fluid distribution conduit or chimney for improving the distribution of downwardly flowing poly-phase mixture including at least one gas phase and at least one liquid phase, above at least one catalyst bed of granular solid catalytic material. The fluid distribution device for receiving the liquid and gas phases has one or more openings in the top and/or upper portion of its height through which a gas phase can enter and has a gas conduit that opens to a mixing cavity within the device. The fluid distribution device further comprises one or more lateral openings for liquid ingress. The lateral opening or openings allow the liquid to enter a liquid conduit that opens to the internal mixing cavity. The mixing cavity allows intimate contact between the liquid and gas phases. Therefore the flow distribution device of the invention provides improved tolerance for tray out of levelness.
Abstract:
A process for separating an ionic liquid from hydrocarbons employs a coalescer material having a stronger affinity for the ionic liquid than the hydrocarbons. The coalescer material can be a high surface area material having a large amount of contact area to which ionic liquid droplets dispersed in the hydrocarbons may adhere. The process includes feeding a mixture comprising ionic liquid droplets dispersed in hydrocarbons to a coalescer comprising the coalescer material. The process further includes a capture step involving adhering at least a portion of the ionic liquid droplets to the coalescer material to provide captured droplets and a coalescing step involving coalescing captured droplets into coalesced droplets. After the capture and coalescence steps, the coalesced droplets are allowed to fall from the coalescer material to separate the ionic liquid from the hydrocarbons and provide a hydrocarbon effluent.
Abstract:
Provided is a process for producing low volatility, high quality gasoline blending components which comprises recirculation of at least a portion of a recovered stream comprising primarily isoparaffins. Recirculation of the stream allows for an enhanced I/O ratio and a more cost effective process.
Abstract:
A regeneration process for re-activating an ionic liquid catalyst, which is useful in a variety of reactions, especially alkylation reactions, and which has been deactivated by conjunct polymers. The process includes a reaction step and a solvent extraction step. The process comprises (a) providing the ionic liquid catalyst, wherein at least a portion of the ionic liquid catalyst is bound to conjunct polymers; and (b) reacting the ionic liquid catalyst with aluminum metal to free the conjunct polymers from the ionic liquid catalyst in a stirred reactor or a fixed reactor. The conjunct polymer is then separated from the catalyst phase by solvent extraction in a stirred extraction or packed column.
Abstract:
The present invention is directed to a method for hydroprocessing Fischer-Tropsch products. The invention in particular relates to an integrated method for producing liquid fuels from a hydrocarbon stream provided by Fischer-Tropsch synthesis. The method involves separating the Fischer-Tropsch products into a light fraction with normal boiling points below 700° F. and including predominantly C5-20 components and a heavy fraction with normal boiling points above 650° F. and including predominantly C20+ components. The heavy fraction is subjected to hydrocracking conditions, preferably through multiple catalyst beds, to reduce the chain length. The light fraction is used as all or part of a quench fluid between each catalyst bed.
Abstract:
A light-weight and easily manufacturable catalyst support structure is provided, which allows fluid flow into a catalyst bed in uniform distribution. The support structure is formed in a cone-like shape in which the diameter enlarges upward. The support structure comprises a shell-like support member, a first mesh layer comprising thick mesh elements, and a second mesh layer having a mesh size which does not allow catalytic particulates to pass through. The first mesh layer overlays the support member, and the second mesh layer overlays the first mesh layer. The shell-like support member includes a circular bottom plate extending perpendicular to the center line of the reactor, and a side wall having a truncated cone shape which extends upward from the edge of the bottom plate. The bottom plate and the side wall are primarily made of perforated plates through which the fluid passes. A plurality of cylindrical flow guides of different diameters are provided underneath the shell-like support member.