Abstract:
When a through speed ratio, which is an overall speed ratio of a variator and a subtransmission mechanism, varies from a larger speed ratio than a mode switch speed ratio to a smaller speed ratio than the mode switch speed ratio, a gear position of the subtransmission mechanism is changed from a first gear position to a second gear position. The mode switch speed ratio is set at a through speed ratio obtained when the speed ratio of the variator is a Highest speed ratio and the gear position of the subtransmission mechanism is the first gear position.
Abstract:
An electrochromic compound represented by the following formula (1) is provided: where each of R1 to R9 and Ar1 to Ar6 independently represents one of a hydrogen atom, a halogen atom, a monovalent organic group, a group in which two or more aryl and/or heteroaryl groups are bound to each other via a covalent bond, a group in which two or more aryl and/or heteroaryl groups are condensed with each other to form a ring, and a polymerizable functional group; and at least one of Ar1 to Ar6 represents an aryl group, a heteroaryl group, a group in which two or more aryl and/or heteroaryl groups are bound to each other via a covalent bond, or a group in which at least two aryl or heteroaryl groups are condensed with each other to form a ring.
Abstract:
To provide an electrochromic compound, represented by the following general formula where X1, X2, X3, X4, X5, X6, X7 and X8 are each independently a hydrogen atom or a monovalent substituent; R1 and R2 are each independently a monovalent substituent; A− and B− are each independently a monovalent anion; and Y is represented by the following general formula (II) or (III): where X9, X10, X11, X12, X13, X14, X15, X16, X17, and X18 are each independently a hydrogen atom or a monovalent substituent.
Abstract:
An electrochromic element is provided. The electrochromic element includes a first electrode, a second electrode, an electrolyte disposed between the first electrode and the second electrode, a first layer overlying the first electrode, and a second layer overlying the second electrode. The first layer contains an oxidizable color-developing electrochromic compound. The second layer contains a compound having the following formula (1): wherein each of R1 to R5 independently represents a hydrogen atom, a halogen atom, or a monovalent organic group, and at least one of R1 to R5 includes a functional group directly or indirectly bindable to a hydroxyl group (OH).
Abstract:
An electrochromic element includes first and second display electrodes arranged at intervals and opposed to each other, at least one of the first and second display electrodes being transparent; an electrolyte provided between the first and second display electrodes; a first electrochromic layer including at least one of an oxidized electrochromic compound and an oxidized electrochromic composition, and contacting the first display electrode and the electrolyte; a second electrochromic layer including at least one of a reduced electrochromic compound and a reduced electrochromic composition, and contacting the second display electrode and the electrolyte; third and fourth auxiliary electrodes contacting the electrolyte; a reduction layer provided on the third auxiliary electrode and including a reductant of a first material; and an oxidation layer provided on the fourth auxiliary electrode and including an oxidant of a second material. The first and second materials can be oxidized and reduced reversibly.
Abstract:
To provide an electrochromic compound represented by the following general formula (1) where X1 and X2 are each independently a carbon atom or a nitrogen atom, R1, R2 and R3 are each independently a halogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted alkoxy group, x is an integer selected from 0 through 3, y and z are each independently an integer selected from 0 through 4, and at least one of L1 and L2 is a monovalent functional group bonded to a nitrogen atom of a pyridinium ring directly, or via a divalent substituent.
Abstract:
To provide an electrochromic device, including a laminated body, which includes: at least one support; a first electrode layer on the support; an electrochromic layer on the first electrode layer; a second electrode layer disposed to face the first electrode layer; and an electrolyte layer, which fills between the first electrode layer and the second electrode layer, and is on the electrochromic layer, the at least one support including a resin substrate, and the laminated body having a desired curve formed by thermoforming.
Abstract:
An electrochromic element is provided. The electrochromic element includes a first electrode, a second electrode, an electrolyte disposed between the first electrode and the second electrode, a first layer overlying the first electrode, and a second layer overlying the second electrode. The first layer contains an oxidizable color-developing electrochromic compound. The second layer contains a compound having the following formula (1): wherein each of R1 to R5 independently represents a hydrogen atom, a halogen atom, or a monovalent organic group, and at least one of R1 to R5 has a functional group directly or indirectly bindable to hydroxyl group.
Abstract:
An electrochromic device, which contains: one support; a first electrode layer formed on the support; a second electrode layer provided to face the first electrode layer; an electrochromic layer provided to be in contact with the first electrode layer or the second electrode layer; a solid electrolyte layer containing inorganic particles, which is filled between the first electrode layer and the second electrode layer, and is provided to be in contact with the electrochromic layer; and a protective layer provided on the second electrode layer.
Abstract:
In a manual mode, a gear position of a continuously variable transmission is selected based on an input operation from a driver, a final through speed ratio is set based on the selected gear position and a variator and a sub-transmission mechanism are controlled to realize the final through speed ratio. Whether an input torque to the sub-transmission mechanism is positive or negative is determined based on an input torque to the sub-transmission mechanism when the manual mode is selected.