Abstract:
A method for obtaining at least one calibration filter for a Mass Spectrometry (MS) instrument system. Measured isotope peak cluster data in a mass spectral range is obtained for a given calibration standard. Relative isotope abundances and actual mass locations of isotopes corresponding thereto are calculated for the given calibration standard. Mass spectral target peak shape functions centered within respective mass spectral ranges are specified. Convolution operations are performed between the calculated relative isotope abundances and the mass spectral target peak shape functions to form calculated isotope peak cluster data. A deconvolution operation is performed between the measured isotope peak cluster data and the calculated isotope peak cluster data after the convolution operations to obtain the at least one calibration filter. Provisions are made for normalizing peak widths, combining internal and external calibration, and using selected measured peaks as standards. Aspects of the methods are applied to other analytical instruments.
Abstract:
A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. Luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. The samples may be injected in the wells, and the samples may be injected with buffers and reagents, by an injector. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, a filter, and a camera lens, whereupon a focused image is created by the optics on the charge-coupled device (CCD) camera. The use of a Fresnel field lens, in combination with a collimator and filter, reduces crosstalk between samples below the level attainable by the prior art. Preferred embodiments of the luminescence detecting apparatus and method disclosed include central processing control of all operations, multiple wavelength filter wheel, and robot handling of samples and reagents. Preferred embodiments of processing software integrated with the invention include elements for mechanical alignment, outlier shaving, edge detection and masking, manipulation of multiple integration times to expand the dynamic range, crosstalk correction, dark subtraction interpolation and drift correction, multi-component analysis applications specifically tailored for luminescence, and uniformity correction.
Abstract:
A method for analyzing data obtained from at least one sample in a separation system (10, 50, 60) that has a capability for separating components of a sample containing more than one component as a function of at least two different variables comprising obtaining data representative of the at least one sample from the system, the data being expressed as a function of the two variables; forming a data stack (70, 74, 78, 82, 84) having successive levels, each level containing successive data representative of the at least one sample; forming a data array (R) representative of a compilation of all of the data in the data stack; and separating the data array into a series of matrixes. A chemical analysis system that operates in accordance with the method, and a medium having computer readable program code for causing the system to perform the method.
Abstract:
A method for analyzing data from a mass spectrometer including obtaining calibrated mass spectral data involving at least one ion with its isotopes, by processing raw spectral data; obtaining library spectral data which has been processed to form calibrated library data; and performing a regression analysis, preferably using matrix operations, between the calibrated mass spectral data and the calibrated library data; and reporting at least one regression coefficient representative of a relative concentrations of a component in a sample which generated the raw spectral data. The invention is also directed to a mass spectrometer system that operates in accordance with the method, a data library of transformed mass spectra, and a method for producing the data library.
Abstract:
A method for analyzing data obtained from at least one sample in a separation system (10, 50, 60) that has a capability for separating components of a sample containing more than one component as a function of at least two different variables including obtaining data representative of the at least one sample from the system, the data being expressed as a function of the two variables; forming a data stack (70, 74, 78, 82, 84) having successive levels, each level containing successive data representative of the at least one sample; forming a data array (R) representative of a compilation of all of the data in the data stack; and separating the data array into a series of matrixes. A chemical analysis system that operates in accordance with the method, and a medium having computer readable program code for causing the system to perform the method.
Abstract:
A method for analyzing data obtained from at least one sample in a separation system (10, 50, 60) that has a capability for separating components of a sample containing more than one component as a function of at least two different variables comprising obtaining data representative of the at least one sample from the system, the data being expressed as a function of the two variables; forming a data stack (70, 74, 78, 82, 84) having successive levels, each level containing successive data representative of the at least one sample; forming a data array (R) representative of a compilation of all of the data in the data stack; and separating the data array into a series of matrixes. A chemical analysis system that operates in accordance with the method, and a medium having computer readable program code for causing the system to perform the method.
Abstract:
A method for analyzing data from a mass spectrometer comprising obtaining calibrated continuum spectral data by processing raw spectral data; obtaining library spectral data which has been processed to form calibrated library data; and performing a least squares fit, preferably using matrix operations (equation 1), between the calibrated continuum spectral data and the calibrated library data to determine concentrations of components in a sample which generated the raw spectral data. A mass spectrometer system (FIG. 1) that operates in accordance with the method, a data library of transformed mass spectra, and a method for producing the data library.
Abstract:
Standardization is achieved for FTIR spectrometric instruments that effect an intrinsic distortion in spectral information, the distortion being associated with an aperture size. An idealized function of spectral line shape is specified. With a small calibration aperture, spectral data is obtained for a basic sample having known "true" spectral data, and standard spectral data also is obtained for a standard sample. With a larger, normal sized aperture, standard spectral data is obtained again for the calibration sample. A transformation factor, that is a function of this data and the standardized function, is applied to spectral data for test samples to effect standardized information. In another embodiment, the standard sample has known true spectral data, and the basic sample is omitted. In either case, the transformation factor is applied to the sample data in logarithm form, the antilogarithm of the result effects the standardized information.
Abstract:
A method for calibrating two-dimensional responses measured on multiple instruments or on a single instrument under different operating conditions. The method calculates two separate banded diagonal transformation matrices using the responses of a common standard sample to simultaneously correct for the response channel shift and intensity variations in both dimensions or orders. The two transformational matrices are estimated from a set of simultaneous non-linear equations via the Gauss-Newton method. The effects of noise and transformation matrix bandwidth on the standardization performance were studied through computer simulation. From computer simulation and experimental data, it was found that the design of the standard sample is crucial for the parameter estimations and response standardization.