Abstract:
A laser scanner measures 3D coordinates from a first position and a second position and uses a sensor unit that includes at least an accelerometer and gyroscope to register the 3D coordinates, the registration based at least in part on comparison to a measured sensor displacement to a preferred displacement value.
Abstract:
A method for optically scanning and measuring an environment using a 3D measurement device is provided. The method includes steps that are performed prior to operation. These steps include positioning a near-field communication (NFC) device adjacent the 3D measurement device. An NFC link is established between the NFC device and the 3D measurement device. An identifier is transmitted from the NFC device to the 3D measurement device. It is determined that the NFC device is authorized to communicate with the 3D measurement device based at least in part on the identifier. Commands are transferred to the 3D measurement device from the NFC device based at least in part on determining the first NFC device is authorized. At least one communication path is activated. The 3D measurement device is connected to a network of computers and measurement data is transmitted from the 3D measurement device to the network of computers.
Abstract:
A method for measuring and registering 3D coordinates has a 3D scanner measure a first collection of 3D coordinates of points from a first registration position. A 2D scanner collects horizontal 2D scan sets as 3D measuring device moves from first to second registration positions. A processor determines first and second translation values and a first rotation value based on collected 2D scan sets. 3D scanner measures a second collection of 3D coordinates of points from second registration position. Processor adjusts second collection of points relative to first collection of points based at least in part on first and second translation values and first rotation value. Processor identifies a correspondence among registration targets in first and second collection of 3D coordinates, and uses this correspondence to further adjust the relative position and orientation of first and second collection of 3D coordinates.
Abstract:
A method for scanning and measuring using a 3D measurement device is provided. The method includes providing the 3D measurement device having a light emitter, a light receiver and a command and evaluation device. The 3D measurement device is further includes a first near-field communication (NFC) device having a first antenna. A second NFC device having a second antenna is positioned adjacent the 3D measurement device. An NFC link is established between the first NFC device and the 3D measurement device. An identifier is transmitted from the second NFC device to the 3D measurement device. It is determined that the second NFC device is authorized to communicate with the 3D measurement device. Commands are transferred to the 3D measurement device from the second NFC device based at least in part on the determination that the second NFC device is authorized to communicate with the 3D measurement device.
Abstract:
A method and system for acquiring three-dimensional (3D) coordinates of a surface is provided. The method includes providing the scanner configured to emit a light from the light source and reflect the light onto the surface, the scanner further being configured to determine with a processor a three-dimensional coordinate of a point on the surface based at least in part on a first and second angle measuring device and a reflection of the light from the surface. An image is acquired of the surface with a camera and a feature is identified. A first area is identified having a high information content and a first arc segment is determined. The surface is scanned by rotating a motor at a first speed during the first arc segment and at a second speed during a second arc segment, the second speed being greater than the first speed.
Abstract:
A method for measuring and registering three-dimensional (3D) coordinates by measuring 3D coordinates with a 3D scanner in a first registration position, measuring two-dimensional (2D) coordinates with a 2D scanner while moving from the first registration position to a second registration position, measuring 3D coordinates with the 3D scanner at the second registration position, and determining a correspondence among targets in the first and second registration positions while moving between the second registration position and a third registration position.
Abstract:
A tripod head for mounting a 3D measurement device on a tripod stand, having a base element, which can be connected to the tripod stand, a cover element, which is configured to cooperate with the 3D measurement device, and a control element by means of which activation of the tripod head changes its state, the states including at least one waiting state, in which the tripod head is ready to operate with the 3D measurement device in the direction of a tripod head axis and the 3D measurement device can be detached from the tripod head, and a locked state, in which the 3D measurement device is fixedly connected to the tripod head, and there is an additional state of the tripod head between the waiting state and the locked state, i.e., a secured state, in which the 3D measurement device sits undetachably on the tripod head.
Abstract:
A method for automatically generating a three-dimensional (3D) video of a scene by measuring and registering 3D coordinates at a first position and a second position of a 3D measuring device, the 3D video generated by combining two-dimensional images extracted at trajectory points along a trajectory path.
Abstract:
A method interactively displays panoramic images of a scene. The method includes measuring 3D coordinates of the scene with a 3D measuring instrument at a first position and a second position. The 3D coordinates are registering into a common frame of reference. Within the scene, a trajectory includes a plurality of trajectory points. Along the trajectory, 2D images are generated from the commonly registered 3D coordinates. A trajectory display mode sequentially displays a collection of 2D images at the trajectory points. A rotational display mode allows a user to select a desired view direction at a given trajectory point. The user selects the trajectory display mode or the rotational display mode and sees the result shown on the display device.
Abstract:
A method interactively displays panoramic images of a scene. The method includes measuring 3D coordinates of the scene with a 3D measuring instrument at a first position and a second position. The 3D coordinates are registering into a common frame of reference. Within the scene, a trajectory includes a plurality of trajectory points. Along the trajectory, 2D images are generated from the commonly registered 3D coordinates. A user interface provides a trajectory display mode that sequentially displays a collection of 2D images at the trajectory points. The user interface also provides a rotational display mode that allows a user to select a desired view direction at a given trajectory point. The user selects the trajectory display mode or the rotational display mode and sees the result shown on the display device.